FOUNDATION REPORT US 50/LATROBE ROAD WEST BOUND OFF-RAMP UC (BRIDGE NO. 25-0122K) 03-ED-50, EA 03-2E5101

EL DORADO COUNTY, CALIFORNIA

Prepared by:

BLACKBURN CONSULTING

11521 Blocker Drive, Suite 110 Auburn, CA 95603 (530) 887-1494

March 2012

Prepared For:

Quincy Engineering, Inc. Sacramento, California Auburn Office: 11521 Blocker Drive, Suite 110 • Auburn, CA 95603 (530) 887-1494 • Fax (530) 887-1495

Modesto Office: (209) 522-6273 West Sacramento Office: (916) 375-8706

Geotechnical

Construction Services

Forensics

File No. 1072.8 March 30, 2012

Mr. Brent Lemon, P.E. Quincy Engineering, Inc. 3247 Ramos Circle Sacramento, CA 95827

Subject: FOUNDATION REPORT US 50/Latrobe Road West Bound Off-Ramp UC Bridge No. 25-0122K, 03-ED-50, EA 03-2E5101 El Dorado County, California

Dear Mr. Lemon:

Blackburn Consulting (BCI) is pleased to submit this Foundation Report for the Latrobe Road West Bound Off-Ramp UC, New Bridge No. 25-0122K, in El Dorado County, California. BCI prepared this report in accordance with our Agreement dated February 3, 2012 between BCI and Quincy Engineering, Inc. We submitted a Draft Foundation Report on March 5, 2012 and incorporate review comments in this report. Review comment and response is included in Appendix C.

Thank you for the opportunity to be part of your design team. Please call if you have questions or require additional information.

Sincerely;

BLACKBURN CONSULTING

FOUNDATION REPORT US 50 / Latrobe Road West Bound Off-Ramp UC P.M. 0.9, Bridge No. 25-0122K, 03-ED-50, EA 03-2E5101 El Dorado County, California

TABLE OF CONTENTS

1	INT	FRODUCTION	1
	1.1	Purpose	1
	1.2	Scope of Services	
	13	Sita Description	1
	1.5		1
2	1.4 DO	Project Description	ן ר
2	DO		·····∠
	2.1	Caltrans	2
	2.2	Consultant Reports	
3	SU]	BSURFACE INVESTIGATION	3
4	LA	BORATORY TESTS	3
5	SII	TE GEOLOGY AND SUBSURFACE CONDITIONS	4
	5.1	Regional Geology	4
	5.2	Local Geology and Faulting	4
	5.3	Subsurface Soil and Rock Conditions	
	5.3.	1 Caltrans	
	5.3.2	2 Previous Consultant Explorations	5
	5.3	3 BCI Exploration	6
	5.4	Groundwater	6
	5.4.	1 Caltrans	
	5.4.1 5.4	 Previous Consultant Explorations BCL Observations 	
6	CO	DRROSION EVALUATION	
Ŭ	<i>c</i> 1	Dervious Studios	0
	0.1	Frevious Studies	0
7	6.2		8
/ 0	NA SEI	I UKALLY UUUKKING ASBESI US	9
0	SEI	ISMIC DATA AND EVALUATION	9
	8.1	Geologic Hazards	9
	8.2	Seismic Study	9
	8.2.	1 Ground Motion Study	
	8.2.2 2 2	<i>Liquefaction Evaluation</i>	
	0.2. 8 2 4	4 Seismic Settlement	
	8.2.	5 Seismic Slope Instability	
9	AS	-BUILT FOUNDATION DATA	12

FOUNDATION REPORT US 50 / Latrobe Road West Bound Off-Ramp UC P.M. 0.9, Bridge No. 25-0122K, 03-ED-50, EA 03-2E5101 El Dorado County, California

TABLE OF CONTENTS

(continued)

10 FC	OUNDATION RECOMMENDATIONS	14
10.1	Spread Footing Data Table	
10.2	Settlement	
10.3	Lateral Load Resistance	
10.4	Retaining Walls	
10.5	Approach Fill Earthwork	
10.	0.5.1 Fill Material	
10.	0.5.2 Expansive Material	
10.	0.5.3 Geometry and Stability	
10.	0.5.4 Site Preparation	
10.	0.5.5 Settlement	
11 LA	ATERAL EARTH PRESSURES	
12 C	ONSTRUCTION CONSIDERATIONS	19
12.1	Excavation and Shoring	
12.2	Foundation Construction	
12.3	Foundation Monitoring	
12.4	Dewatering	
12.5	Naturally Occurring Asbestos	
12.6	Storm Water Quality	
13 R	ISK MANAGEMENT	
14 LI	IMITATIONS	
		······

FOUNDATION REPORT

US 50 / Latrobe Road West Bound Off-Ramp UC P.M. 0.9, Bridge No. 25-0122K, 03-ED-50, EA 03-2E5101 El Dorado County, California

TABLE OF CONTENTS

(continued)

FIGURES

- Figure 1 Vicinity Map
- Figure 2 Geologic Map
- Figure 3 Seismic Hazard Map
- Figure 4 ARS Curve

APPENDIX A

- Subsurface Exploration Summary
- Laboratory Test Results
- Log of Test Borings
 - Latrobe Road WB Off-Ramp Undercrossing
 - Latrobe Road Undercrossing (BCI, August 2007)
- General Plan
- Foundation Plan

APPENDIX B

- Footing Data (provided by QEI)
- Calculations for WSD Design and LRFD Design

APPENDIX C

• Caltrans Review Comment and BCI Response

1 INTRODUCTION

1.1 Purpose

Blackburn Consulting (BCI) prepared this Foundation Report for the proposed Latrobe Road West Bound Off-Ramp Undercrossing (UC, Bridge No. 25-0122K) in El Dorado County, California. BCI prepared this report in accordance with our Agreement dated February 3, 2012 between BCI and Quincy Engineering, Inc. (QEI).

BCI prepared this report for QEI and the design team to use for project design. Do not use or rely upon this report for different locations or improvements without the written consent of BCI.

1.2 Scope of Services

To prepare this report, BCI:

- Discussed the project with the QEI design team
- Reviewed available project documentation provided by QEI and obtained by BCI
- Reviewed published maps and literature related to site soil, rock, and geologic conditions
- Drilled/excavated, logged, and sampled one boring and one trench to supplement existing subsurface data at the UC location
- Performed engineering analysis

1.3 Site Description

The project is located on US 50 about 4,500 feet east of the Sacramento County line in El Dorado County, California where US 50 crosses over Latrobe Road. Latrobe Road changes to El Dorado Hills Boulevard immediately north of US 50. The project is part of the US 50 Phase-1 HOV Lane Project that extends from the Sacramento/El Dorado County line (PM 0.0) to west of Bass Lake Road (PM 2.9) along US 50. Figure 1 shows the bridge site location.

1.4 Project Description

The proposed project is approximately the 4th construction phase (and final bridge construction phase) of the ultimate improvement project for this interchange. Funding for the project is State and Local. The overall project consists of reconstruction of the westbound on- and off-ramps of the El Dorado Hills Boulevard/Latrobe Road interchange on US 50 from Post Mile (PM) 0.20 to 1.40. Proposed improvements include:

- West bound diagonal on-ramp
- West bound loop off-ramp
- Latrobe Road West Bound Off-Ramp UC (Bridge No. 25-0122K)
- Installation of new signals at the westbound ramp intersection
- Modifications to the existing intersection at El Dorado Hills Boulevard and Saratoga Way
- Overhead sign structure at the off-ramp exit
- Drainage system improvements
- Removal of the existing west bound ramps and signalized intersection

The UC bridge will consist of a two-span precast, prestressed, concrete box girder structure and will be 200 feet long and approximately 39 feet wide. The new deck grade will pass through elevation 630.14 at Abutment-1 (west end) and 626.95 at Abutment-3 (east end).

The substructure will consist of high wall abutments and a two-column bent, all supported on spread footings in rock. Based on discussions with QEI, uniform base of spread footing foundations are planned at elevation 598.0 feet for all supports.

New retaining walls will include Standard Type 1 walls on the north side of the bridge with infill walls on the south side (between the new bridge and the existing). The infill wall will have a height similar to the abutment walls (approximately 24 to 30 feet). The retaining walls on the north side will vary in height from 16 to 24 feet with foundations stepping up from elevation 602 feet to 610 feet. See the General Plan and Foundation Plan attached in Appendix A for bridge details.

Benchmark datum used for this project is National Geodetic Vertical Datum of 1929 and North American Datum of 1983.

2 DOCUMENT REVIEW

To determine subsurface conditions and develop foundation design and construction recommendations, BCI reviewed the following structure/site information published by the State of California Bridge Department (Caltrans) and private consultant reports.

2.1 Caltrans

- Foundation Study, Latrobe Road UC, III-EC-11-A, Bridge No. 25-71 R/L, OR, March 15, 1963.
- As-Built Plans, Latrobe Road Undercrossing, Sheets 1/11 11/11, As-Built stamp undated, plans dated January 6, 1964.
- Memorandum, Foundation Report for Latrobe Road UC (Br-25-71 R/L & OR), August 3, 1965.

- Memorandum, Preliminary Geologic Recommendations and Resource Estimate for Advance Planning Study, Latrobe Road Undercrossing, Bridge No. 25-0071 LR, April 5, 2000.
- Memorandum, Seismic Design Recommendations, Latrobe Road Undercrossing, Bridge No. 25-0071 LR, March 31, 2000.

2.2 Consultant Reports

- Blackburn Consulting, Foundation Report, Latrobe Road UC, Bridge No. 25-0122, EA 03-3A7111, El Dorado County, March 11, 2008
- Taber Consultants, Foundation Investigation, Latrobe Road Retaining Wall, Bridge No. 25E0002, 03-ED-50-1.1/1.7, El Dorado County, December 6, 2004.
- Taber Consultants, Foundation Investigation, Latrobe Rd WB OR UC Bridge May 14, 2002.
- España Geotechnical Consulting, Final Materials Report for the El Dorado Hills Boulevard-SR 50 Interchange, 03-EL-50-KP 0.28/2.52, El Dorado County, for CH2M Hill, January 2002.

3 SUBSURFACE INVESTIGATION

Considering the significant amount of existing subsurface data at the bridge location and adjacent bridge locations, we performed only minor additional subsurface investigation. For the ramp work, BCI completed a trench near Abutment 1 and one boring near Abutment 3. Taber (2002) completed 3 borings (one at each abutment and 1 at the center bent) at the bridge site during a previous study; this is the primary subsurface information source for this project. In addition, other subsurface investigations have been completed for the original mainline UC and the recent bridge replacement project. We discuss the findings of these investigations further in Section 5.3, Subsurface Soil and Rock Conditions.

4 LABORATORY TESTS

For this study, the following laboratory tests were performed on soil/rock samples obtained from our test boring/trench:

- Moisture Content-Dry Density (ASTM D2937 & D2216)
- pH/Minimum Resistivity (CTM 643)
- Chloride (CTM 422) and Sulfate (CTM 417)

We attach laboratory test results in Appendix A.

5 SITE GEOLOGY AND SUBSURFACE CONDITIONS

5.1 Regional Geology

The project is located within the foothills of the Sierra Nevada geomorphic province of California. The Sierra Nevada has a general northwest topographic trend and is on the order of 430 miles long and 40 to 80 miles wide. Rock of the Sierra Nevada was created roughly 120 to 130 million years ago when sediments as thick as 30,000 feet along with volcanic rocks were buckled and warped resulting in a series of low mountain ranges. The roots of these mountain ranges were then intruded by granitic rock.

The Sierra Nevada was tilted upward as a result of faulting along the east edge of the mountain ranges. In the higher elevations of the Sierra Nevada, much of the older sedimentary rock has been eroded to expose granitic rock. Older rocks that remain have been metamorphosed and are exposed in the foothills of the Sierra Nevada.

Most of El Dorado County is underlain by Mesozoic-age metavolcanic and metasedimentary rocks. The metamorphic rock structure is dominated by a series of northwest-trending faults and fault zones that mark the boundaries of various rock types.

5.2 Local Geology and Faulting

Published geologic mapping by Wagner¹ and Busch² shows Jurassic-age metavolcanic and metasedimentary rock throughout the project area. The mapping also shows the north-south trending West Bear Mountains Fault (a.k.a., Prairie Creek-Spenceville-Deadman Fault per Caltrans) about 1,000 feet east of the Latrobe Road UC. We show local site geology and faulting on Figure 2 (based on Busch, 2001).

West of the West Bear Mountains Fault, the referenced mapping shows metavolcanic rock associated with the Copper Hill Volcanics ("mostly mafic to andesitic pyroclastic rocks, lava and pillow lava; subordinate felsic porphyritic and pyroclastic rocks") and metasedimentary rock associated with the Salt Springs Slate ("mostly dark gray slate with subordinate tuff, greywacke and rare conglomerate"). East of the West Bear Mountain Fault, mapped geology is shown as ophiolitic terrain comprised of metavolcanic rocks ("mafic to felsic; minor sedimentary rock") and metasedimentary rocks ("slate, quartzite, chert, carbonate rock").

The referenced mapping does not show the project site within an ultramafic rock area. However, ultramafic rocks are mapped nearby. This is a common host rock for naturally occurring asbestos minerals (NOA). Geologic mapping of asbestos containing rocks by Churchill³ shows

Camorina Geological Survey, OFR 200

¹ Wagner, D.L. et al, "Geologic Map of the Sacramento Quadrangle, California", California Geological Survey, Map No. 1A, 1981, revised 1987.

 ² Busch, "Generalized Geologic Map of El Dorado County, California", June, 2001, California Geological Survey, OFR 2000-03.
 ³ Churchill, et al., 2000, "Areas More Likely to Contain Natural Occurrences of Asbestos in Western El Dorado County, California", California Geological Survey, OFR 2000-02

an "area more likely to contain naturally occurring asbestos" about one mile north of the Latrobe Road UC and also east of Bass Lake Road (2 miles east of the project). The mapping shows the entire project interval to be within an area "that probably does not contain asbestos."

Mapping by Bruyn, 2005⁴, shows the project within a "Quarter Mile Buffer for More Likely to Contain Asbestos or Fault Line". Churchill discusses the possibility of serpentine occurring in faults or within fault zones, which may contain chrysotile or tremolite/actinolite asbestos.

During our surface reconnaissance of the project area and in our subsurface exploration, we did not observe outcrops containing serpentinite, a host rock for NOA, or significant bands of fibrous (asbestiform) minerals within the visible bedrock. As discussed above, NOA mapping does not show the project interval within an ultramafic rock area, although the project is near mapped faults and other areas known to contain naturally occurring asbestos.

5.3 Subsurface Soil and Rock Conditions

5.3.1 Caltrans

Subsurface exploration performed by the State in December 1962 consisted of five, 1-inch soil tube borings, supplemented by three 2.5-inch diameter cone penetration borings. The cone penetration borings were driven to effective refusal at depths varying from 5 feet to 30 feet using a No. 2 M^cKiernan-Terry air hammer at 115 psi.

The foundation study and LOTB drawing indicate that subsurface materials at the site consist of clay and fill underlain by slate [rock]. Appendix A includes the LOTB drawing (January 6, 1964) for those borings.

5.3.2 Previous Consultant Explorations

The referenced Taber Consultants (Taber) reports are the most pertinent to the project. Taber drilled three exploratory borings to a maximum depth of 46 feet below the ground surface (bgs) in February 1999 at the UC location (Taber 2002 report). Taber used solid-stem flight auger and rotary drilling methods to drill through soil and weathered bedrock, and diamond-coring equipment to drill the borings through the less weathered rock.

In general, Taber identified metamorphic rock at elevations ranging from approximately 613 ft near Abutment 1 (west end) to 616 ft near Abutment 3 (east end). In the boring completed in El Dorado Hills Boulevard/Latrobe Road near Bent 2, rock was encountered at a depth of about 1.5 ft below the ground surface (approx. elevation of 603 ft). In the boring at El Dorado Hills Blvd/Latrobe Road and the boring at Abutment 3, the upper 17 to 20 feet of rock is described as "very intensely weathered and fractured". Below these depths and in the boring completed near

⁴ Bruyn, 2005, "Asbestos Review Areas, Western Slope, County of El Dorado, State of California", El Dorado County

Abutment 1, the rock is generally described as "moderately to slightly weathered." Fill and native soil overlay the rock. In Appendix A, we include the Taber LOTB information (redrafted) on our LOTB for the project.

5.3.3 BCI Exploration

For this project, BCI primarily used the data from the 1999 Taber LOTB. For the ramp work, we completed an additional trench near Abutment 1 and one boring near Abutment 3. These exploration points confirm the presence of shallow rock near the abutments. We include a soil / rock unit profile with engineering properties in Appendix B.

At Abutment 1, rock at and below foundation level (elev. 598) is moderately to slightly weathered, intensely to moderately fractured, and hard to very hard. The Rock Quality Designation (RQD) for cores near foundation level range from 10 to 26%. We classify this rock as having "very poor" to "poor" rock mass quality based on Table 4.4.8.1.2A, Caltrans Bridge Design Specifications, November 2003.

At Bent 2, rock at and below foundation level is decomposed to moderately weathered, very intensely to intensely fractured, and very soft to soft. Coring was not necessary at foundation level and SPT blowcounts ranged from 66 to 54 for a 6-inch drive.

At Abutment 3, rock at and below foundation level is moderately to slightly weathered, intensely fractured and very hard. RQD for core near foundation level ranges from 0 to 100%. We classify rock as having "very poor to fair" rock mass quality.

Appendix A contains the LOTB drawings for this study which provides more specific soil and rock descriptions and an explanation of descriptive terms used to log soil and rock core. Appendix A also contains the description of the exploration and sampling methods, and laboratory tests conducted on samples obtained during the exploration.

5.4 Groundwater

5.4.1 Caltrans

The 1963 Caltrans foundation study states "Groundwater was not encountered during the field study; however, surface water was present." The April 5, 2000 Memorandum states "Groundwater was encountered during the field investigation in December 1962. The highest groundwater elevation (per 1963 datum) measured at the site is at elevation 187.3 m (614.5 ft)." The as-built LOTB shows groundwater levels as follows in Table 1:

Boring No.	Boring Elevation (Ground Surface, ft)	Measured Groundwater Elevation (ft)	
B5	607.8	607.3	
B6	614.5	613.5	
B7	612.0	609.0	
B8	612.6	612.6	

Table 1 – Groundwater Summary from 1963 Foundation Study

Note: Elevations shown are referenced to datum used in 1963

5.4.2 Previous Consultant Explorations

Taber encountered groundwater at depths ranging between about 7 feet and 14 feet bgs (elevation of 614.7 feet to 592.2 feet) in borings completed in February 1999.

5.4.3 BCI Observations

During our subsurface exploration for the Latrobe Road UC (June 2007), we encountered groundwater at a depth of about 36 feet (elevation 591.6 feet msl) in Boring 07-B2. We did not encounter groundwater within the augered intervals in Borings 07-B1 or 07-B3 to depths of 16 feet (elevation 605.5 feet) and 5 feet (elevation 600.2 feet), respectively. We did not obtain groundwater measurements in those borings below the augered intervals due to the presence of drill fluid.

During construction of the recent mainline UC improvements (May 2010), we observed groundwater in foundation excavations for the abutments and bent (base of excavation at elevation 598 feet). This water required pumping for removal prior to placement of concrete. Foundation excavation was completed during a very wet spring season.

In general, we expect:

- overburden soils and upper portions of decomposed rock to be seasonally saturated
- shallow groundwater and seepage along the soil/rock interface and within shallow, fractured rock during the winter months or extended periods of rainfall
- groundwater within the underlying less-weathered rock to be discontinuous, likely transmitted as seepage through rock discontinuities (e.g., fractures, joints, etc.).

6 CORROSION EVALUATION

6.1 **Previous Studies**

Taber Consultants evaluated soil corrosivity for previous studies made within the project area in the vicinity of the Latrobe Road UC. Laboratory test results indicate a "non-corrosive" soils environment as defined by the September 2003 Caltrans "Corrosion Guidelines" publication.⁵

BCI evaluated soil and weathered rock samples obtained during our site exploration for the adjacent mainline UC project. Test results for that project also indicate a "non-corrosive" soils environment. Table 2 presents those corrosivity test results.

Boring and Sample	Depth (ft)	Approx. Elevation (ft)	Minimum Resistivity (Ohm-cm)	рН	Chloride Content (ppm)	Sulfate Content (ppm)
B1-1	5.5	616	1,930	7.01	16.4	52.2
B1, Run 1	15.5	606	1,050	7.55	31.7	154.4
B2-4	21	607	3,220	7.25	6.1	18.6

Table 2 - Soil Corrosion Test Summary

The laboratory test results indicate a "non-corrosive" soils environment as defined by the Caltrans "Corrosion Guidelines" publication (2003).

6.2 Current Study

BCI completed an additional corrosion test on a sample of weathered rock from Boring A-12-104 near Abutment 3. Test results indicate the following:

- Chloride content of 4 ppm
- Sulfate content was non-detectable
- Minimum resistivity of 2,931 Ohm-cm
- pH of 8.67

The additional test supports a "non-corrosive" soils/weathered rock environment. Appendix A contains the test result.

⁵ Caltrans considers a site to be corrosive to foundation elements if one or more of the following conditions exist: 1) Chloride concentration is greater than or equal to 500 ppm, 2) sulfate concentration is greater than or equal to 2000 ppm, or 3) pH is 5.5 or less (Corrosion Guidelines, Version 1.0, 2003).

7 NATURALLY OCCURRING ASBESTOS

Previous studies referenced above include laboratory tests on rock to evaluate the presence of naturally occurring asbestos. None of the samples tested detected the presence of naturally occurring asbestos minerals at or near the bridge site.

BCI evaluated soil/rock samples obtained during the subsurface exploration for the mainline UC for the presence of naturally occurring asbestos (NOA). Asbestos TEM Laboratories, Inc. tested the samples in accordance with the California Air Resources Board (CARB) Method 435 for determination of asbestos.

For the adjacent Latrobe Road UC project, laboratory test results on two samples, Sample ID: LB-2-1 II and LB-2-5 III, show <0.25% Actinolite and "None Detected", respectively.

8 SEISMIC DATA AND EVALUATION

8.1 Geologic Hazards

Published mapping does not show landslide features within the project interval. Based on our review, existing fill and cut slopes in the project area have performed well and appear stable. The high, north facing, rock cut on the eastbound off-ramp (south side of US 50) has experienced some slab, and wedge failures due to the steepness of the slope and exposure of discontinuities with unfavorable orientation; these conditions are not present near the west bound off-ramp UC. We did not observe significant geologic hazards (such as landsliding, settlement, soft soils, severe erosion, springs, etc) during our review of the subject site.

8.2 Seismic Study

8.2.1 Ground Motion Study

Based on Caltrans ARS Online (V1.0.4) and other mapping, the closest recognized Late Quaternary or younger fault is the Bear Mountains Fault Zone (Rescue Fault section, Caltrans Fault ID No. 83, Maximum Magnitude, MMax = 6.5) located approximately 8.75 miles (14 km) east of the site. Figure 3, Seismic Hazard Map in Appendix A, shows the approximate fault locations.

We used the Caltrans ARS Online (web-based tool) to calculate both deterministic and probabilistic acceleration response spectra for the site based on criteria provided in Appendix B of the Caltrans Seismic Design Criteria (Revision Date:11/2010). Caltrans design spectrum is based on the larger of the deterministic and probabilistic spectral values.

The deterministic spectrum is determined as the average of median response spectra calculated using ground motion prediction equations developed under the "Next Generation Attenuation"

(NGA) project. These equations are applied to all faults considered to be active in the last 750,000 years (late-Quaternary age) that are capable of producing a moment magnitude earthquake of 6.0 or greater.

The probabilistic spectrum is obtained from the USGS (2008) National Hazard Map for 5% probability of exceedance in 50 years. Probabilistic analysis includes deaggregation for applicable fault distance when near-fault effects apply (as for the UC site).

Both the deterministic and probabilistic spectra account for soil effects through incorporation of the parameter Vs30, the average shear wave velocity in the upper 30 meters of the soil profile. For the project site, we assume a Site Class B/C with Vs30 equal to 760 meters per second (approximately 2,500 feet per second) based on the mapped ground conditions (underlain by shallow metamorphic rock).

In general, the minimum deterministic spectra controls at shorter site periods and the probabilistic spectra controls at longer periods (above about 0.9 seconds). The peak ground acceleration (PGA) at the site is approximately 0.2g based on Caltrans ARS Online and minimum deterministic levels of ground acceleration. We present data points for site spectra in the Table 3 below and graphed site spectra in Figure 4.

		0.0000000000					
Period	SA	Period	SA	Period	SA	Period	SA
0	0.197	0.085	0.376	0.35	0.333	1.4	0.092
0.01	0.197	0.09	0.389	0.36	0.327	1.5	0.086
0.02	0.201	0.095	0.401	0.38	0.315	1.6	0.082
0.022	0.204	0.1	0.414	0.4	0.303	1.7	0.078
0.025	0.208	0.11	0.43	0.42	0.291	1.8	0.074
0.029	0.214	0.12	0.445	0.44	0.279	1.9	0.071
0.03	0.216	0.13	0.458	0.45	0.273	2	0.068
0.032	0.221	0.133	0.461	0.46	0.267	2.2	0.061
0.035	0.228	0.14	0.468	0.48	0.257	2.4	0.055
0.036	0.231	0.15	0.476	0.5	0.248	2.5	0.052
0.04	0.241	0.16	0.476	0.55	0.223	2.6	0.05
0.042	0.246	0.17	0.474	0.6	0.203	2.8	0.046
0.044	0.251	0.18	0.472	0.65	0.185	3	0.042
0.045	0.254	0.19	0.469	0.667	0.18	3.2	0.039
0.046	0.256	0.2	0.466	0.7	0.171	3.4	0.036
0.048	0.262	0.22	0.444	0.75	0.158	3.5	0.034
0.05	0.267	0.24	0.423	0.8	0.148	3.6	0.033
0.055	0.284	0.25	0.413	0.85	0.138	3.8	0.031
0.06	0.3	0.26	0.403	0.9	0.131	4	0.029
0.065	0.317	0.28	0.386	0.95	0.126	4.2	0.027
0.067	0.323	0.29	0.377	1	0.121	4.4	0.026
0.07	0.333	0.3	0.369	1.1	0.112	4.6	0.025
0.075	0.348	0.32	0.354	1.2	0.104	4.8	0.024
0.08	0.362	0.34	0.34	1.3	0.097	5	0.023

 Table 3 - Caltrans ARS Online Envelope* Spectrum Data

 0.08
 0.362
 0.34
 1.5
 0.097
 5
 0.023

 * Envelope data for this site is a combination of the Minimum Deterministic Spectra and Probabilistic Spectra
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 0.023
 <td

8.2.2 Liquefaction Evaluation

Liquefaction can occur when saturated, loose to medium dense, granular soils (generally within 50 feet of the surface), or specifically defined cohesive soils, are subjected to ground shaking. Rock is present at shallow depths throughout the project site. We consider the potential for detrimental soils liquefaction to be very low to nonexistent.

8.2.3 Fault Rupture

The site does not lie within or adjacent to an Alquist–Priolo Earthquake Fault Zone for fault rupture hazard (Bryant and Hart, 2007)⁶, and no known active faults cross the project location. The referenced mapping by Busch shows the main trace of the West Bear Mountains Fault (Prairie Creek-Spenceville-Deadman Fault) crossing US 50 about 1,000 feet east of Latrobe Road and a north-south trending splay associated with this fault crossing US 50 about 3,000 feet east of the Latrobe Road. Jennings (1994)⁷ shows the West Bear Mountains Fault as Pre-Quaternary in age (>1.6 million years), considered inactive. The Caltrans Deterministic PGA Map (September 2007) does not show this fault as an active seismic source and shows no active faults in the project area. The closest fault considered in ground motion analysis is the East Bear Mountains Fault (or Rescue section, Caltrans Fault Identification No. 83) located approximately 8 miles east of the site (see Figure 3). We consider the potential for fault rupture at the site to be low.

8.2.4 Seismic Settlement

During a seismic event, ground shaking can cause densification of granular soil above the water table that can result in settlement of the ground surface. As discussed above, rock is present at shallow depth throughout the site. We consider the possibility of detrimental seismic settlement at this site to be low when embankment fills are constructed in accordance with Caltrans specifications.

8.2.5 Seismic Slope Instability

We consider the potential for seismic slope instability in the form of landslides and mudslides at this site to be very low to nonexistent. Similarly, we consider the potential for seismically induced rockslides or rockfall on engineered cut/fill slopes constructed no steeper than 1.5H:1V to be very low.

9 AS-BUILT FOUNDATION DATA

The Caltrans April 5, 2000 Memorandum presents a summary of the existing Latrobe Road UC, Bridge No. 25-0071 LR foundations. Table 4 below summarizes the foundation data obtained from the as-built plans, foundation report and the memorandum.

⁶ Fault Rupture Hazard Zones in California, Special Publication 42, Interim Revision; California Geological Survey ⁷ Fault Activity Map of California and Adjacent Areas, Geologic Map No. 6, California Division of Mines and Geology

Location	Foundation Type	Design Bearing Capacity (tsf)	Pile Design Loading (ton)	R/L Elevation* (ft)
Abutment 1R/1L	10 BP 42 H-Pile		45	597.3/600
Bent 2R				600/600
Bent 2L				600/600
Bent 3R	Spread Footing, 8 ft	4		599.2/601
Bent 3L	square by 2 ft thick	4		601/601
Bent 4R				600.5/601
Bent 4L				601/601
A hutmont 5D/5I	10 DD 42 U Dila		15	601 6/605 2

Abutment 5R/5L10 BP 42 H-Pile--45601.6/605.2* Bottom of footing elevation and average tip elevations. The average tip elevations shown on the as-built plans
vary slightly from the average taken from the pile driving records. The values presented are the averages obtained
from the pile driving records. Elevations shown in the table are referenced to datum used in 1963 for original
study, and are approximately 2.6 feet lower than current NAVD 88 project datum.

All piles were driven using a Delmag D12 Diesel hammer. For the right bridge abutments, embankment fill was predrilled prior to driving piles. Predrilling was not required for the left bridge abutments. The spread footing at Bent 3 (right bridge, right column) was overexcavated 1.8 feet below the planned elevation. The spread footing at Bent 4 (right bridge, right column) was overexcavated 0.5 feet below the planned elevation.

As-built information has not yet been released for the mainline bridge replacement project in 2010 but the design foundation information is as follows in Table 5:

	Spread Footing Size (ft)												WSD	LRFD		
Support			Bottom of Footing	Minimum Footing Embedment	(LRFD Service-I Limit State Load Combination)	Service	Strength $\phi_b = 0.45$	Extreme Event φ _b = 1.0								
Location	В	L	Elevation (ft)	Depth (ft)	Allowable Gross Bearing Capacity (ksf)	Permissible Net Contact Stress (ksf)	Factored Gross Nominal Bearing Resistance (ksf)	Factored Gross Nominal Bearing Resistance (ksf)								
Abut 1	18.0	142.0	598.0	5.0	7.5	N/A	N/A	N/A								
Bent 2	12.0	14.0	598.0	7.0	N/A	23.0	15.0	34.0								
Abut 3	18.0	142.0	598.0	5.0	7.5	N/A	N/A	N/A								

Table 5 – Foundation Design Information for Latrobe Mainline Bridge Replacement

It is our understanding, based on limited observation during construction and discussion with others, that the fractured and weathered nature of the rock allowed for foundation excavation with conventional equipment (significant chiseling was not necessary).

10 FOUNDATION RECOMMENDATIONS

We consider the most appropriate foundation type at this site to be spread footings established within the underlying rock unit. Below, we provide specific recommendations for spread footing foundations established within weathered rock. Site foundation characteristics/ constraints affecting details of support level and bearing include:

- depth to rock and variation of rock surface along individual support lines
- hard rock excavation to bearing levels
- mechanical defects of the rock (fractures/joints)
- potential presence of semi-detached blocks of rock or overbreak within footing excavations

Alternatively, Cast-In-Drilled-Hole (CIDH) piles or large diameter drilled-shafts (at the bent) can be considered at this site, particularly if resistance to high uplift and lateral load demands is required. Such piles would need to be 24-inch (minimum) diameter in consideration for potential ground water and likely require difficult excavation within variably hard rock. CIDH pile tip elevations would depend on pile/shaft diameter and defined compressive, tensile and lateral loading requirements.

We do not expect that driven (displacement) piles will achieve adequate penetration for stability and do not recommend their use. Steel H-piles could be considered at the abutments but they would be short (some likely \leq 12 feet), achieve only very limited rock penetration (i.e., point bearing only), and provide little lateral or tensile resistance.

10.1 Spread Footing Data Table

Based on footing foundation design data provided by QEI and our geotechnical analysis, we provide spread footing foundation design recommendations in Table 6. A discussion of our analyses follows.

					WS	SD	LRFD			
	Footing Size (ft) B		Bottom of	Minimum Footing	(LRFD Service-I Limit State Load Combination)		Service	Strength $\phi_b = 0.45$	Extreme Event $\varphi_b = 1.0$	
Support Location	В	L	Footing Elevation (ft) ³	Embedment Depth (ft)	Permissible Gross Contact Stress (ksf)	Allowable Gross Bearing Capacity (ksf)	Permissible Net Contact Stress (ksf)	Factored Gross Nominal Bearing Resistance (ksf)	Factored Gross Nominal Bearing Resistance (ksf)	
Abut 1	18.0	40.0 ⁴	598.0	7.0	12	13	N/A	N/A	N/A	
Bent 2	12.0	14.0	598.0	10.0	N/A	N/A	23	23	52	
Abut 3	18.0	40.0^{4}	598.0	7.0	12	13	N/A	N/A	N/A	

Table 6 – Spread Footing Data TableFoundation Design Recommendations for Spread Footings ^{1,2}

Notes: 1) Recommendations are based on the foundation geometry and loads provided by the Design Engineer. The footing contact area is taken as equal to the effective footing area, where applicable.

2) See Memo to Designers (MTD) 4-1 for definitions and applications of the recommended design parameters.

3) Footing elevation conforms to QEI Foundation Plan

4) Footing length will be extended 27.5 ft for wall footing (between existing and new structure)

BCI determined the values shown above based on Working Stress Design (WSD) at the abutments and Load and Resistance Factor Design (LRFD) at the bent. Our recommendations are based on specific loads provided by the design engineer for the foundation geometry shown in the Spread Footing Data Table. We conservatively modeled the rock at foundation level as a dense, gravelly soil with groundwater near the surface (elevation of approximately 603 feet). We include footing foundation design data provided by QEI and our spread footing design calculations in Appendix B.

10.2 Settlement

We determined the total settlement of spread footing foundations at all supports based on elastic settlement theory and conservatively modeled the rock as a dense, gravel soil. For spread footings established as above, we estimate that settlement will be nominal (less than 1-inch) and will occur substantially during construction. We expect differential settlement to be less than one-half of the total settlement. We include our settlement calculations in Appendix B.

Due to the presence of rock at foundation level, induced settlement at existing, adjacent structure locations (mainline bridge abutments) will be insignificant.

10.3 Lateral Load Resistance

Calculate lateral load resistance of spread footings for seismic or other transient loads as follows:

- A soil friction factor $(\tan \delta)$ of 0.45 for cast in-place concrete foundations bearing on intact rock materials.
- An allowable passive pressure of 250 pcf equivalent fluid pressure against the face of the footing (based on formed footings with compacted structure backfill or footings poured neat against intact rock), with a resistance factor (ϕ_{τ}) of 0.5.
- Passive and friction resistance may be combined.

10.4 Retaining Walls

New retaining walls (Type 1) are planned along the north side of each abutment. The planned length, height, and bottom of footing elevation for the walls are as follows in Table 7:

Support Location	Total Length (feet)	Height (feet)	Base of Footing Elevation for Type 1 Retaining Wall (feet)	
Abut - 1	44	18, 22, and 24	Steps up from 602 to 610	
Abut - 3	36	16, 20, and 24	Steps up from 602 to 610	

 Table 7 – Abutment Retaining Wall Summary

For Type-1 retaining walls with level backfill (Case 1) condition, Caltrans "Standard Plans" indicate maximum toe pressures of 3.5 ksf to 4.9 ksf for retaining wall heights between 16 feet and 24 feet high.

We expect the planned retaining walls established at or below elevation 610 feet at Abutment 1 and Abutment 3 to engage intact, weathered rock. Minor engineered fill (Structure Backfill) prism may occur below the wall foundations due to excavation and backfill for adjacent abutment foundations (at elevation 598 ft).

Adequate bearing capacity is available for maximum toe pressures indicated for the Caltrans Type-1 retaining wall foundations established within intact weathered rock (or engineered fill prism) at or below elevation 610 feet at Abutment 1 and 3. Maximum and differential settlements across and along the walls will be less than 1-inch. We expect that settlement will occur substantially during construction.

10.5 Approach Fill Earthwork

10.5.1 Fill Material

We assume locally excavated soil/weathered rock will be used for construction of approach fills at this location. The source of borrow material for construction of approach fills has not been identified. Proposed borrow must be tested and approved for use by the project engineer prior to transporting to the site.

10.5.2 Expansive Material

Expansive materials shall not be placed as part of the embankment within the limits of the bridge abutment for the full width of the embankment. Place only material with a low expansion potential. Low expansion material is defined as having an Expansion Index (EI) less than 50 (per ASTM D4829), and a Sand Equivalent (SE) greater than 20 (per California Test 217).

10.5.3 Geometry and Stability

Where approach fill is placed, side slopes will have a gradient of 2H:1V or flatter. The proposed geometry is a common slope gradient considered stable for typical approach fill construction. We assume abutment backfill will consist of materials conforming to Structure Backfill requirements. The mostly moderate slope of the existing ground surface and high strength of the underlying rock will provide a stable base on which to construct the fills. Foundations supported on or near a fill slope are not proposed.

10.5.4 Site Preparation

In the area of approach fills, clear and grub existing slopes in accordance with the Caltrans "Standard Specifications", Section 16. Construct structure backfill at the abutments in accordance with the "Standard Specifications", Section 19-3.06. Construct the embankment approach fills in accordance with the "Standard Specifications", Section 19-6.01, including at least 95% relative compaction on all fill within 150 ft of bridge abutments.

10.5.5 Settlement

Due to the presence of shallow rock, we do not anticipate significant settlement at approach fills. We expect post-construction settlement between the abutment backwall and adjacent approach fills/backfill to be less than ½-inch, provided structure backfill is compacted in accordance with the "Standard Specifications." A waiting period is not necessary.

11 LATERAL EARTH PRESSURES

We assume that the approach fill material meets the requirements of Caltrans standard for Structure Backfill. To determine equivalent fluid weights (EFWs), we use Caltrans specified materials with a soil unit weight of approximately 120 pcf, a minimum angle of internal friction equal to 33 degrees, and an assumed drainage material behind the walls. Use the following EFWs to design the abutments walls and wing walls at Abutments 1 and 3:

Condition	EFW Static	EFW Seismic
Active	36 lb/ft^3	40 lb/ft^3
At-Rest	55 lb/ft^3	62 lb/ft^3
Passive	270 lb/ft^3	250 lb/ft^3

The values shown above assume level backfill conditions and that drainage is placed behind walls in accordance with Caltrans "Standard Plans and Specifications." To limit wall deflection to acceptable levels, BCI applied a factor of safety of 1.5 to the ultimate passive pressure to generate the allowable passive pressures provided above.

We estimate the EFWs for seismic loading using the Mononobe-Okabe equation for active and passive lateral coefficients K_a and K_p . We estimated the at-rest coefficient, K_o , for the seismic condition using an increase ratio similar to the active condition. In the Mononobe-Okabe equation, BCI used a horizontal seismic acceleration coefficient (k_h) of 0.10 calculated using the equation in Chapter 11, Section 11.6.5 of the AASHTO LRFD Bridge Design Specifications-4th Edition. This k_h value assumes that the walls displace at least 1-inch during the design seismic event. We calculated the above static EFWs using methods presented in the 1982 Naval Facilities (NAVFAC) Design Manual 7.2.

Apply the resultant of the seismic active and at-rest pressures at a depth 0.5H from the base of the wall, where H equals the wall height. For surcharge loads, apply an additional uniform lateral load behind the wall equivalent to 0.30 times the surcharge pressure. Use a soil friction factor (tan δ) of 0.45 for cast in-place concrete foundations bearing on weathered rock. The passive pressures are applicable for concrete placed directly against undisturbed soil/weathered rock or compacted fill.

For seismic loading into abutments, use a maximum passive pressure of 5.0 ksf for longitudinal abutment response, with the proportionality factor presented in Section 7.8.1 of Caltrans Seismic Design Criteria v.1.6.

12 CONSTRUCTION CONSIDERATIONS

12.1 Excavation and Shoring

We expect that excavation of soils can be achieved using typical heavy-duty construction equipment and that excavation of weathered rock within footing limits to depths indicated above will be locally difficult, but generally achievable without blasting. Use of air tools/chiseling may be necessary.

Rock blasting may disrupt/degrade integrity of the surrounding rock and the adjacent bridge structures (particularly at the abutments). Therefore, rock blasting should not be permitted.

The contractor is responsible for design and construction of excavation sloping and shoring in accordance with Cal OSHA requirements and the Caltrans "Trenching and Shoring Manual." Native soils and weathered rock can be classified as Type B soils in accordance with Cal OSHA.

Particular consideration for shoring will be required for local areas of weak rock, existing embankment fill, areas exhibiting potential for failure along daylighting fracture planes, and to protect existing bridge supports. Particular consideration will be required to protect the existing bridge abutments during construction.

12.2 Foundation Construction

Place footing concrete "neat" (without forming), against trimmed, intact bearing material within clean and dry excavations. If forming is necessary, backfill excavations outside footing limits with lean concrete or suitable granular backfill (i.e. "Structure Backfill" per Caltrans "Standard Specifications") compacted to at least 95% relative compaction (per CTM 216).

If it is necessary to deepen footing excavations to engage suitable bearing materials, it is acceptable to backfill with structural concrete to plan footing grade, up to a depth of 3 feet below the footing, with BCI approval. Any exposed open joint/fractures should be evaluated by a BCI Engineering Geologist with respect to bearing/stability considerations and cleaned/surfaced-grouted, if necessary.

12.3 Foundation Monitoring

During construction, we recommend placement of monitoring points on the existing footings adjacent to new construction, and frequent surveying for movement. In the event significant ($>^{1}/_{4}$ -inch horizontal or vertical) movement of the existing foundations is detected, contact BCI immediately for consultation to evaluate movement and consider mitigations, if necessary.

12.4 Dewatering

We do not anticipate the presence of groundwater within footing excavations during dry season construction (July through October). If/where seepage is encountered, we expect it can be controlled with sump pumps.

12.5 Naturally Occurring Asbestos

Based on the previous test results at the mainline bridge location, testing in adjacent areas completed by BCI for the other ramp work, and observed rock conditions, BCI considers the risk of encountering rock with significant quantities of NOA minerals to be low. However, considering the occurrence of NOA in the vicinity of the project, we recommend preparation of an Asbestos Hazard Mitigation Plan in compliance with provisions of El Dorado County Air Quality Management District (EDAQMD) Rule 223-2.and California Air Resources Board requirements.

Visually monitor rock types exposed during construction for the potential presence of naturally occurring asbestos (NOA) minerals. If construction activities expose NOA, comply with the applicable provisions of EDAQMD Rule 223-2 and the State of California Asbestos Airborne Toxic Control Measure (ACTM), CCR Title 17, Section 93105. In addition, prepare a worker health and safety program for excavations in areas with NOA in accordance with all regulatory requirements, including CAL OSHA.

12.6 Storm Water Quality

We expect that construction term erosion control will be available by means of typical good construction practices (e.g., use of erosion barriers, synthetic slope covers, hydro-seeding, etc.). This project will involve earthwork and we expect that the contractor will develop a Storm Water Pollution Prevention Plan, specific for this project.

13 RISK MANAGEMENT

Our experience and that of our profession clearly indicates that the risks of costly design, construction, and maintenance problems can be significantly lowered by retaining the geotechnical engineer of record to provide additional services. For this project, BCI should be retained to:

• Review and provide written comments on the (civil, structural) plans and specifications prior to construction.

- Monitor construction to check and document our report assumptions. At a minimum, review bridge and wall foundation excavations to observe foundation conditions for the presence of open joints / fractures (or other defects), and confirm bearing materials and treatment of rock defects (if/as necessary).
- Update this report if design changes occur, two years or more lapse between this report and construction, and/or site conditions change

If BCI is not retained to perform the above applicable services, we are not responsible for any other parties' interpretation of our report, and subsequent addenda, letters, and discussions.

14 LIMITATIONS

BCI performed services in accordance with the generally accepted geotechnical <u>standard of</u> <u>practice</u> currently used in this area. Where referenced, we used CTM and ASTM <u>standards</u> as a general (not strict) *guideline* only. We do not warranty our services.

BCI also based this report on the current site and project conditions. We assumed the soil/rock and groundwater conditions encountered at our exploration points and those by others are representative of the subsurface conditions across the site. Actual conditions between borings could be different. Groundwater may be higher in other locations and times than measured in the borings.

The interface between soil and rock types on the logs is approximate. The transition between soil and rock types may be abrupt or gradual. We base our recommendations on the final logs, which represent an interpretation of the field logs and general knowledge of the site and geological conditions.

Our scope did not include evaluation of flooding or hazardous materials on site. This Report should only be used for design and construction of the Latrobe Road West Bound Off-Ramp Undercrossing, as described herein. We provide a separate Geotechnical Design/Materials Report for the overall project and a Limited Phase II Assessment for hazardous materials.

Modern design and construction are complex, with many regulatory sources, restrictions, involved parties, construction alternatives, etc. It is common to experience changes and delays. The owner should set aside a reasonable contingency fund based on complexities and cost estimates to cover changes and delays.

Figures

Figure 1 – Vicinity Map Figure 2 – Geologic Map Figure 3 – Seismic Hazard Map Figure 4 – ARS Curve

APPENDIX A

- Subsurface Exploration Summary
- Laboratory Test Results
- Log of Test Borings
 - Latrobe Road WB Off-Ramp UC (Sheets 1 through 4)
 - Latrobe Road Undercrossing (BCI, August 2007)
- General Plan
- Foundation Plan

SUBSURFACE EXPLORATION SUMMARY

To provide additional subsurface data and confirmation of shallow rock conditions, BCI retained Taber Consultants to drill and sample 1 exploratory borings near the west bound off-ramp UC location. Taber used a CME 75 truck-mounted rig, equipped with 4-inch O.D. solid flight augers, to drill the boring on February 6, 2012 to refusal (in rock) at a depth of 8.5 feet below the ground surface (bgs).

Taber obtained relatively undisturbed samples using a Modified California Sampler (equipped with 2.5-inch I.D. brass liners). Samplers were driven into the ground with a 140 pound, automatic hammer falling 30 inches.

The test trench was excavated by Monte Ricky Excavation using a CAT 430-D backhoe equipped with an 18-inch wide bucket. BCI obtained bulk samples from the excavation.

BCI's geologist logged the boring and trench consistent with the Unified Soil Classification System (USCS) and Caltrans' 2010 logging manual, and noted the degree of weathering, fracture density, and hardness. BCI also made groundwater water observations during exploration operations. At the completion of field work, the explorations were backfilled with cuttings.

BCI's boring and trench locations and elevations were determined by field estimation (they were not surveyed).

Taber completed 3 borings at the bridge site in 1999. For the drilling and sampling methods used to advance these borings, refer to the LOTB.

LABORATORY TEST RESULTS

BCI performed laboratory tests on selected samples obtained from the exploratory borings. Tests included:

- pH/Minimum Resistivity (CTM 643)
- Chloride (CTM 422)
- Sulfate (CTM 417)

BCI performed laboratory tests in substantial conformance with the designated test procedure. The test results are attached.

The following table summarizes the NOA test results from the mainline bridge replacement project (BCI, 2008).

Location	Line	Station	Sample ID	Depth (ft)	Elevation (ft, msl)	% Asbestos	Туре
Latrobe	A2	55+12.5	LB-2-1 II	5-6	622	ND	N/A
Road UC	A2	55+12.5	LB-2-5 III	26-27	601	<0.25%	Actinolite

Naturally Occurring Asbestos (NOA) Test Summary US 50 HOV Lane Project Mainline Bridge Replacement

(530) 887-1494 fax: (530) 887-1495

Minimum Resistivity and pH Test Results

File No.: 1072.8 Date: 2/14/2012 Project Name: SR 50 HOV Westbound Ramps

Sample ID	Minimum Resistivity, Ohm-cm @ 15.5°C	рН
A12-104-B03	2,931	8.67

Minimum Resistivity and pH performed based on Caltrans Test Method 643

11521 Blocker Drive, Suite 110 Auburn, CA 95603

	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS			
624.68 NAVD 1929	03	ED	50	0.4/1.2					
SK, 78.24° LI, STATION NORTHING 2000992.20, 618.23 NAVD 1929 , 67.26' RT, STATION NORTHING 2001018.23,	PLANS APPROVAL DATE The State of Colifornia or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet. The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet. The State of California or its officers or agents the responsible for the accuracy or the respons								
	BLACKBURN CONSULTING 2491 BOATMAN AVENUE WEST SACRAMENTO, CA 95691 FILE No. 1072.8								
	QUINCY ENGINEERING, INC. 3247 RAMOS CIRCLE SACRAMENTO, CA 95827-2501								
fication of soils was in accordance with ASTM D 2488-00 "Description and									

Identification of Soils (Visual-Manual Procedure)" and 2012 Field classification of soils was in accordance with the Caltrans Soil & Rock Logging, Classification, and Presentation Manual 2010. See Log of Test Borings No. 2 and 3, "Soil Legend". 1999 boring logs converted from metric to english. 2. 1999 Rock classification according to Caltrans "Soil & Rock Logging Classification Manual (Field Guide)", August 1996, and Bureau of Reclamation, U.S. Department of the Interior, USBR-5000, "Procedure for Determining Unified Soil Classification", Earth Manual, Part II, Third Edition, 1990. 3. Standard Penetration tests were performed in accordance with ASTM D 1586-99 (1999) and 1586-08 (2012) using a hammer operated with cat-head, rope and pulley with a 30-inch drop (1999) and automated drop system (2012). Drill rods were 1 5/8-inch diameter "A"-rods; sampler was driven

4. "2.4 inch sampler": ID=2.4 inch, OD=2.9 inch. Driven in same manner as SPT ("1.4 inch") sampler. 5. Where indicated by an asterisk (*) the number of blows shown is for only that fraction of the initial

6. If laboratory tests are not shown as being performed, the soil descriptions presented in the LOTB are based solely on the visual practices described in the before mentioned Manuals. 7. The length of each sampled interval is shown graphically on the boring log.

8. Consistency of soils shown in () where estimated.

9. Groundwater surface (GWS) reflect the fluid level in the borings on the specified date. Groundwater surface is subject to seasonal fluctuations and may occur at higher or lower elevations depending on

10. Electronic media for plan view provided by Quincy Engineering, "Foundation Plan" dated March 2012. 11. Boring elevations are approximate and based on "Topography" received December 2004. 12. The "Log of Test Borings" drawing is included with plans in accordance with Section 2-1.06B of

10.86' Lt, Sta. 58+	49.05		
"W1" Line	1	630	
	(GM), (medium dense), brown, r	620 moist.	
intensely to r fractured, dry	noderately weathered, intensely , moderately hard.	610 ⁻	
02-06-2012 d at Elev. 610.7' ter not encountered -5.0' depth		600 z	
		590	
		580 [∀] > □ □	
		570	
		560	
	 59+00	PROFILE HOR. 1"=20' VERT. 1"=10'	
22K LATRO	DBE ROAD WB	OFF RAMP UC	
	OG OF TEST BORI	NGS 1 OF 4	
NTRACT NO.: 03-2E5101	DISREGARD PRINTS BEARING EARLIER REVISION DATES	- 03/30/12 SHEET	OF

REFERENCE: CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL (2010)

CEMENTATION				
Description	Criteria			
Weak	Crumbles or breaks with handling or little finger pressure.			
Moderate	Crumbles or breaks with considerable finger pressure.			
Strong	Will not crumble or break with finger pressure.			

	BOREHOLE IDENTIFICATION								
Symbol	Hole Type	Description							
Size	А	Auger Boring (hollow or solid stem bucket)							
Size	R RW RC P	Rotary drilled boring (conventional) Rotary drilled with self-casing wire-line Rotary core with continuously-sampled, self-casing wire-line Rotary percussion boring (air)							
Size	R	Rotary drilled diamond core							
Size	HD HA	Hand driven (1-inch soil tube) Hand Auger							
	D	Dynamic Cone Penetration Boring							
	СРТ	Cone Penetration Test (ASTM D 5778)							
	0	Other (note on LOTB)							
		NOTE: Size in inches.							

CONSISTENCY OF COHESIVE SOILS							
Description	Shear Strength (tsf)	Pocket Penetrometer Measurement, PP, (tsf)	Torvane Measurement, TV, (tsf)				
Very Soft	Less than 0.12	Less than 0.25	Less than 0.12				
Soft	0.12 - 0.25	0.25 - 0.50	0.12 - 0.25				
Medium Stiff	0.25 - 0.5	0.50 - 1	0.25 – 0.5				
Stiff	0.5 – 1	1 – 2	0.5 – 1				
Very Stiff	1 – 2	2 - 4	1 – 2				
Hard	Greater than 2	Greater than 4	Greater than 4				

R. SOWERS	DRAWN BY	M. ROBERTSON	W. NICHOLS 1999, R. PICKARD 2012		PREPARED FOR THE STATE OF CALIFORNIA	Tim Osterkamp	BRIDGE N 25-012
3/30/12 SIGN OFF DATE	CHECKED BY	R. PICKARD	DATE: FEBRUARY 1999 and FEBRUARY 2012		DEPARTMENT OF TRANSPORTATION	PROJECT ENGINEER	POST MIL 0.9
GS CIVIL LOG OF TEST BORINGS SHEET (ENGLISH) (REV. 7/16/10)				ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0 1 2 3	UNIT: X PROJECT NUMBER & PHASE:0312000163	CON
						FILE => \$REQUEST	

DIST	COUNTY	ROUTE	POST MILES TOTAL PROJEC	т	SHEET No	TOTAL SHEETS		
03	ED	50	0.4/1.2					
$\begin{array}{c} \hline \\ \hline $								
BLA 249 WES	BLACKBURN CONSULTING 2491 BOATMAN AVENUE WEST SACRAMENTO, CA 95691 FILE No. 1072.8							
QUINCY ENGINEERING, INC. 3247 RAMOS CIRCLE SACRAMENTO, CA 95827-2501								

	GROUP SYMBO	LS A		IES
phic/Symbo	Group Names	Graph	ic/Symbol	Group Names
GW GP	Well-graded GRAVEL Well-graded GRAVEL with SAND Poorly-graded GRAVEL Poorly-graded GRAVEL with SAND		CL	Lean CLAY Lean CLAY with SAND Lean CLAY with GRAVEL SANDY lean CLAY SANDY lean CLAY with GRAVEL GRAVELLY lean CLAY with SAND
GW-GM	Well-graded GRAVEL with SILT Well-graded GRAVEL with SILT and SAND			SILTY CLAY with SAND SILTY CLAY with SAND
GW-GC	Well-graded GRAVEL with CLAY (or SILTY CLAY) Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		CL-ML	SANDY SILTY CLAY SANDY SILTY CLAY with GRAVEL GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND
GP-GM	Poorly-graded GRAVEL with SILT Poorly-graded GRAVEL with SILT and SAND		M	SILT SILT with SAND SILT with GRAVEL
GP-GC	Poorly-graded GRAVEL with CLAY (or SILTY CLAY) Poorly-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		ML	SANDY SILT with GRAVEL GRAVELLY SILT GRAVELLY SILT with SAND
GM	SILTY GRAVEL SILTY GRAVEL with SAND		<u>OI</u>	ORGANIC lean Clay ORGANIC lean Clay with SAND ORGANIC lean Clay with GRAVEL SANDY ORGANIC lean CLAY
GC	CLAYEY GRAVEL CLAYEY GRAVEL with SAND			SANDY ORGANIC lean CLAY with GRAVEL GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SAND
GC-GM	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL with SAND		01	ORGANIC SILT ORGANIC SILT with SAND ORGANIC SILT with GRAVEL SANDY ORGANIC SILT
sw	Well-graded SAND Well-graded SAND with GRAVEL		02	SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND
SP	Poorly-graded SAND Poorly-graded SAND with GRAVEL		СН	Fat CLAY Fat CLAY with SAND Fat CLAY with GRAVEL SANDY fat CLAY
SW-SM	Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL		GIT	SANDY fat CLAY with GRAVEL GRAVELLY fat CLAY GRAVELLY fat CLAY with SAND
SW-SC	Well-graded SAND with CLAY (or SILTY CLAY) Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)	-	MH	Elastic SILT Elastic SILT with SAND Elastic SILT with GRAVEL SANDY elastic SILT
SP-SM	Poorly-graded SAND with SILT Poorly-graded SAND with SILT and GRAVEL			SANDY elastic SILT with GRAVEL GRAVELLY elastic SILT GRAVELLY elastic SILT with SAND
SP-SC	or SILTY CLAY (or SILTY CLAY) Poorly-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		ОН	URGANIC fat CLAY ORGANIC fat CLAY with SAND ORGANIC fat CLAY with GRAVEL SANDY ORGANIC fat CLAY
SM	SILTY SAND SILTY SAND with GRAVEL			SANDY ORGANIC fat CLAY with GRAVEL GRAVELLY ORGANIC fat CLAY GRAVELLY ORGANIC fat CLAY with SAND
SC	CLAYEY SAND CLAYEY SAND with GRAVEL		ОН	URGANIC elastic SILÍ ORGANIC elastic SILT with SAND ORGANIC elastic SILT with GRAVEL SANDY ORGANIC elastic SILT
SC-SM	SILTY, CLAYEY SAND SILTY, CLAYEY SAND with GRAVEL			SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT GRAVELLY ORGANIC elastic SILT with SAND
PT	PEAT	177 177 177 177	OL/OH	ORGANIC SOIL ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL SANDY ORGANIC SOIL
	COBBLES COBBLES and BOULDERS BOULDERS		,	SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL GRAVELLY ORGANIC SOIL with SAND

	FIELD AND LABORATORY TESTING
)	Consolidation (ASTM D 2435)
)	Collapse Potential (ASTM D 5333)
)	Compaction Curve (CTM 216)
)	Corrosivity Testing
	Consolidated Undrained
	Direct Shear (ASTM D 3080)
	Expansion Index (ASTM D 4829)
	Moisture Content (ASTM D 2216)
	Oraanic Content-% (ASTM D 2974)
	Permeability (CTM 220)
	Particle Size Analysis (ASTM D 422)
	Plasticity Index (AASHTO T 90)
	Point Load Index (ASTM D 5731)
	Pressure Meter
	Pocket Penetrometer
	R-Value (CTM 301)
	Sand Equivalent (CTM 217)
	Specific Gravity (AASHTO T 100)
	Shrinkage Limit (ASTM D 427)
	Swell Potential (ASTM D 4546)
	Pocket Torvane
	Unconfined Compression-Soil
	(ASIM D 2166) Unconfined Compression-Rock (ASTM D 2938)
	Triaxial (ASTM D 2850)
	Unit Weight (ASTM D 2937)
_	

R SOWERS	DRAWN BY	M ROBERTSON	W NICHOLS 1999 R PICKARD 2012		PREPARED FOR THE		BRIDG
DESIGN OVERSIGHT			FIELD INVESTIGATION BY:		STATE OF CALIFORNIA		25-0
3/30/12 SIGN OFF DATE	CHECKED BY	R. PICKARD	DATE: FEBRUARY 1999 and FEBRUARY 2012		DEPARTMENT OF TRANSPORTATION	PROJECT ENGINEER	POST 0
GS CIVIL LOG OF TEST BORINGS SHEET (ENGLISH) (REV. 7/16/10)				ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0 1 2 3	UNIT: X PROJECT NUMBER & PHASE: 0312000163	C
						FILE => \$REQUEST	

			DIST	COUNTY	ROUTE	POST MILES	SHEET	TOTAL		
			03	ED	50	0.4/1.2		JILLIJ		
				\mathcal{D}	1.	· ·	<u>I</u>	L		
				Patr	5/1/2	<u>≥ 03/30/12</u>	NAL GO			
			CEŘ	TIFIED ENGINE	ERING GEOLOG	IST DATE		00		
						$\left(\frac{q}{2}\right) = \frac{F}{F}$	ISCHER	<u>}</u>		
				NS APPRON	AL DATE	(No	<u>1/39</u> 1/31/13	-)))		
			The S	tate of Califor	nia or its offic	ers or agents	RTIFIED			
			shall i	not be respon	sible for the a	ccuracy or State OF	LOGIST	18		
			Compl				CALIT			
			249	1 BOATMAN	AVENUE					
			WES	T SACRAME	ENTO, CA 95	691 FILE No.	1072.8			
			QUIN	NCY ENGINE	ERING, INC.					
			SAC	RAMENTO,	CA 95827-1	2501				
						1				
PPAR	RENT DEN	SITY OF (COHESIO	NLESS	SOILS					
Desc	ription	SPT N ₆₀	-Value (Blc	ows / 12	inches)					
Vory			0 - 6	5		-				
very t	_0056		0)		_				
Loose			5 - 1	0						
Mediur	m Dense		10 - 7	30		-				
wiediui	III Delise		10 0			-				
Dense			30 - 5	50						
Verv [Dense		Greater the	an 50						
,										
						7				
		MOIST	URE							
Desc	ription		Criter	Criteria						
						-				
Dry No discernable r			nable moist	ure						
		.,				-				
Moist Moisture present			present, bu	t no free	water					
Wet		Visable fr	ee water							
not		VISGBIC II								
						_				
PE	ERCENT		ORTION (OF SOIL	.S					
Desc	rintion	-	Criter		-	-				
0030		Particles	are present	but esti	mated to	-				
Trace		be less t	han 5%	but coth	nated to					
For			597 1	0%		1				
Tew			5/6 - 1	0%		_				
Little			15% - 2	25%						
Some			.30% - 4	15%						
Mostly	/		50% - 1	00%						
]				
		FARTICL				-				
[Description			Size		-				
Boulder			Greate	r than 12		_				
Cobble			3" —	12"						
Coarse 3/			3/4" -	- 3"						
siuvei	Fine		1/5"-	- 3/4"						
	Coars	se	1/16"	- 1/5"						
Sand	Mediu	ım	1/64"	- 1/16"						
	Fine		Less t	han 1/30	0"					
	F			• • • •						
				SOIL	LEGE	:ND				
ŀ	BRIDGE NO.							<u> </u>		
[25-0122K	LAI	RUBE	RUAL				ر		
	POST MILE		LOG OF	TEST	BORIN	IGS 3 OF 4				
	0.0			••		REVISION DATES	SHEE1	OF		
000163	CONTRACT	NO: 03-2E51	01 DISREGAT	REVISION DAT		13/30/12				

REFERENCE: CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL (2010)

BEDDING	SPACING
Description	Thickness / Spacing
Massive	Greater than 10'
Very thickly bedded	3 - 10'
Thickly bedded	1 – 3'
Moderately bedded	4" – 1'
Thinly bedded	1" - 4"
Very thinly bedded	1/4" - 1"
Laminated	Less than 1/4"

LEC

	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS
	03	ED	50	0.4/1.2		
		Pate TIFIED ENGINE	ERING GEOLOG	03/30/12 IST DATE 4551		08-151
SEDIMENTARY ROCK	PL/ The_S	ANS APPROV	/AL DATE	ers or agents	1739 1/31/13 ERTIFIED GINEERING EOLOGIST	
METAMORPHIC ROCK	shall comp	not be respon leteness of sc	anned copies o	f this plan sheet.	F CALI FORM	
	BLA 249 WES	CKBURN CO 1 BOATMAN ST SACRAME	DNSULTING N AVENUE ENTO, CA 95	691 FILE No.	1072.8	
	QUII 324 SA0	NCY ENGINE 7 RAMOS (CRAMENTO,	ERING, INC. DIRCLE CA 95827-2	2501		
	- Of R					

	ROCK HARDNESS								
Description	Criteria								
Extremely Hard	Cannot be scratched with a pocketknife or sharp pick, can only be chipped with repeated heavy hammer blows.								
Very Hard	Cannot be scratched with a pocketknife or sharp pick, breaks with repeated heavy hammer blows.								
Hard	Can be scratched with a pocketknife or sharp pick with difficulty (heavy pressure). Breaks with heavy hammer blows.								
Moderately Hard	Can be scratched with a pocket knife or sharp pick with light or moderate pressure, breaks with moderate hammer blows.								
Moderately Soft	Can be grooved 1/16 inch deep with a pocketnife of sharp pick with moderate or heavy pressure. Breaks with light hammer blow or heavy manual pressure.								
Soft	Can be grooved or gouged easily by a pocketknife or sharp pick with light pressure, can be scratched with fingernail, breaks with light to moderate pressure.								
Very Soft	Can be readily indented, grooved or gouged with fingernail, or carved with a pocketknife, breaks with light manual pressure.								

FRACTURE DENSITY							
Description	Observed Fracture Density						
Unfractured	No fractures.						
Very slightly fractured	Core lengths greater than 3 ft.						
Slightly fractured	Core lengths mostly from 1 to 3 ft.						
Moderately fractured	Core lengths mostly from 4 inches to 1 ft.						
Intensely fractured	Core lengths mostly from 1 inches to 4 inches.						
Very intensely fractured	Mostly chips and fragments.						

WEATHERING DESCRIPTORS FOR INTACT ROCK										
		Diagnos	stic features							
Chemical weathering-Disco and/or oxidation		g-Discoloration dation	Mechanical Weathering— Grain boundary conditions	Texture o	and leaching	General Characteristics				
Depenpation	Body of rock	Fracture Surfaces	(disaggregation) primarily for granitics and some coarse-grained sediments	Texture Leaching						
Fresh	No discoloration, not oxidized.	No discoloration or oxidation.	No separation, intact (tight).	No change.	No leaching.	Hammer rings when crystalline rocks ore struck.				
Slightly Weathered	Discoloration or oxidation is limited to surface of, or short distance from, fractures; some feldspar crystals are dull.	Minor to complete discolorization or oxidation of most surfaces.	No visible separation, intact (tight).	Preserved.	Minor leaching of some soluble minerals.	Hammer rings when crystalline rocks are struck. Body of rock not weakened.				
Moderately Weathered	Discoloration or oxidation extends from fractures usually throughout; Fe-Mg minerals are "rusty," feldspar crystals are "cloudy".	All fracture surfaces are discolored or oxidized.	Partial separation of boundaries visible.	Generally preserved.	Soluble minerals may be mostly leached.	Hammer does not ring when rock is struck. Body of rock is slightly weakened.				
intensely Weathered	Discoloration or oxidation throughout; all feldspars and Fe-Mg minerals are altered to clay to some extent; or chemical alteration produces in-situ disaggregation, see grain boundary conditions.	All fracture surfaces are discolored or oxidized, surfaces friable.	Partial separation, rock is friable; in semiarid conditions granitics are disaggregated.	Texture altered by chemical disintegration (hydration, argillation).	Leaching of soluble minerals may be complete.	Dull sound when struck with hammer, usually can be broken with moderate to heavy manual pressure or by light hammer blow without reference to planes of weakness such as incipient or hairline fractures, or veinlets. Rock is significantly weakened.				
Decomposed	Discolored or oxidized throughout, but resistant minerals such as quartz may be unaltered; all feldspars and Fe-Mg minerals are completely altered to clay.		Complete separation of grain boundaries (disaggregated).	Resembles a s or complete re structure may leaching of sol minerals usual	ioil, partial emnant rock be preserved; luble y complete.	Can be granulated by hand. Resistant minerals such as quartz may be present as "stringers" or "dikes".				

									ROCK LEGEND	
	DRAWN BY	M. ROBERTSON	W. NICHOLS 1999, R. PICKARD 2012		PREPARED FOR THE	Tim Osterkamp	bridge no. 25-0122K	LATRO	BE ROAD WB OFF RAM	P UC
_3/30/12	CHECKED BY	R. PICKARD	DATE: FEBRUARY 1999 and FEBRUARY 2012		DEPARTMENT OF TRANSPORTATION	PROJECT ENGINEER	POST MILE 0.9	LO	OG OF TEST BORINGS 4 OF 4	1
GS CIVIL LOG OF TEST BORINGS SHEET (ENGLISH) (REV. 7/16/10)				ORIGINAL SCALE IN INCHES FOR REDUCED PLANS		UNIT: X PROJECT NUMBER & PHASE: 0312000163	CONTRACT	NO.: 03-2E5101	DISREGARD PRINTS BEARING EARLIER REVISION DATES	SHEET OF
						FILE => \$REQUEST				

cordance with the Caltrans Soil &	DIST	COUNTY	ROUTE	TOTAL PROJECT No SHEET						
ntation Manual (June 2007). See d" and Log of Test Borings 5 of	03	03 / ED 50 0.00/2.90								
formed in accordance with ASTM mer operated with cat-head, rope ds were 1 5/8-inch diameter ss liners. =2.9 inch. Driven in same manner rass liners. he number of blows shown is for "seating drive" interval penetrated. being performed, the soil based solely on the visual is shown graphically on the	PLA The S shall comp	NS APPROV	AL DATE where the accur AL DATE and or its officers able for the accur thronic copies of t	3/11/08 OGIST DATE William E. Nichols No. 2229 Exp.1-31-10 OF agents racy or this plan sheet. OF CAUTOR						
("N") represent the "standard dance with the Caltrans Soil & Manual (June 2007). tion is achieved, the blow count dard penetration resistance"	BLA 243 WES Fil	ACKBURN (7 FRONT ST T SACRAMEN e No. 1072	CONSULTINC REET ITO, CA 9569 1.2	G QUINCY ENGINEERING 3247 RAMOS CIRCLE 1 SACRAMENTO, CA 95827-2501						
nere estimated. ns in the borings indicated on the iluid level in the borings on the										
subject to seasonal fluctuations ations depending on the conditions										
n view provided by Quincy										

BENCH MARKS ELEV. 624.68

BENCHMARK# 25113 DESCRIPTION: BRASS DISK, 78.24' LT, STATION 54+98.37, "A2" LINE, NORTHING 2000992.20, EASTING 682695.14. . ELEV. <u>618.23</u>

BENCHMARK# 64 DESCRIPTION: MONUMENT, 67.26' RT, STATION 58+96.89, "A2" LINE, NORTHING 2001018.23, EASTING 6827374.58.

		630		
edium dense	e), orange brown, dry, with	620		
GC—FILL), Id barse sand <u>brown, dry</u> oft, very thi	pose to medium dense, and gravel. 7. decomposed to very intensely nly foliated, very intensely fractured.	610		
moist, with I soil). prown, dry.	gravel and rock fragments decomposed to very intensely	600	e e t)	
soft, very i y green, mo nard, very ir green, mode filling, parti	intensely fractured. oderately to ntensely fractured. erately weathered, hard, intensely fractured ally filled with green mineralization, some	590	L C	
green, mod to very hare clean to ver mineralization	erately weathered to fresh (locally d, intensely to moderately fractured (dips ery thin infilling (locally totally healed), on, very thin to thin calcite veins common	580	<pre>< A T I 0</pre>	
xture.		570		
l interval Irilling below elev.		550		
		540	PROFIL F	
58-	+00		HOR. 1"=20' VERT. 1"=10'	
<u>NO.</u> 122	LATROBE ROAD UN	IDERC	ROSSING	
9	LOG OF TEST B	ORIN	GS 1 of 5	1
RD PRINTS BE REVISION D	ARING ATES 04/18/08	VISION DATES	SHEET 20	0F 24

ž.,

					111-	-ED	- 50)	[PID. DIV	NDAD ND	GAL	E P	NOJ. No.	PIAC	<u><u>k</u> </u>	NO.	TOTAL
										II.		0	XOU VA		A.	1	59	
											200		γ	Ċ,	Emil			
										DATR		•	01	nUð	ry	<u>6</u> ,	<u>/9</u>	<u>54</u>
Built Log State of Ficate ex ment. It nal docu	g of Test B California xpiration do does not ment. Thi	orings registr Ite con attest s draw	sheet ation s firm the to the ing is	is co seal w hat th e accu availa	nside /ith s nis is uracy ble c	red of signat a tr or v	an inf ture, l rue ar validity presen	orm icen id a / of ted	atior se r iccur the only	nal num rate inf	docu ber cop ormo	ment and r y of ation	on egi: the cor ven	nly. A stratic origi ntaine ience	As su on nal d in of a	th	, e	
r, contr	ractor or o	ther in I	POST	ed par	'ty. S—ТО		PROJE	CT			SHEE	TNO	<u>.</u>	τοται	SHE	FT	5	
ĘÐ	50			0.	00/:	2.90											-	
N. (Ric 1	Juil	nof	1			3/	11,	/0	8		_						
JSTEREL				» ΩΩΔ						20								
						BU		 (C)	5 2	20 20 20	$\frac{51}{15}$	٩U					\neg	
A COP		DG OF	TEST B	ORINGS			ABLE A			. 0	52			BRIDO	E NO	э.	\dashv	
L OF STI AMENTO,	CALIFORNIA.	INTENA	NCE AN	NVE UNVE	-S IIG/	A HON	5,	E	EA: 3	3A71	11			25-	0122			
ons sh e follov	nown on t wing table	his L and	og of note	Test s.	t Bo	ring	s are	e tr	ie c	addi	ition		St	неет 21	2	0F 24		
ing	Station		Of	fset fr	rom '	"A2"	Line				//	TSS	ONA	AL G	EOIA			ĺ
-1	55+53.7	5		58 54	.10 f	tRt ft₽+				,	[[\$	\$YY	Wil	lliam			//	
-3	55+24.4	.9		51.	.08 f	t Lt					' 7	΄ <u>Ε</u> .	Ν	licho	ols '	Ń	$\langle \rangle$	
-4	56+54.7	1		50	.29 f	ft Lt					۱)	lo	2:	229		_)		
-5 -6	56+53.8	5		121	1.09	ft Rt	: t	_			\$	Exp.	1-	<u>- 31-</u>	<u>-10</u>	-/-	☆	
-7	55+79.5	0		12	4.82	ft R ¹	t			/		CERII	'IED E OI	ENGINE	ERING	~		
-8	55+72.6	8		51.	.17 ft	t Lt					Ŵ	ATE -			FOR	¥)	/	
1			_															
		_630	2															
		620	<u>۲</u>		DORI JENG	S SRT RESPO INEEF CINGS	CORE	LAN TH	S HA E "A AS S ED 1	LS F LS H SURM	EEN ULTI LITI	CORR PR D BY	ECT INT RF	ED TO	TEU T			
		610																
200	103	600	<u>l</u>															
57		590														-		
									ŅC	DTI	Ę							į
		not	Classific to be co	ention of onstrued	i earth d to in	a mote mpiy m	rial as nechani	show cal c	n on inalys	thia is.	uheet	is bas	ad 1	upon fi	ald in	spa	ction o	ınd is
Elen							00	WIN ANTLI DIVIS		02614 F FUE F HIG	LIC WO	X.						
hic repr driving n	rosentation ate		l		TR	OE	BE	R	DA	D	U	ND	ĒF	RCF	205	SS	INC	6
34 ptr	feet 200			L	0	G	OF	1	LE:	\$ T	Ē	0	RI	INC	GS			
NG		SCALE	As	show	7 18	RIDGE	25-	71	RL2	FIL	.E		DRAN	WING .	2.5	7	1-1	1
	PREI DO	AWING	NO.P		<u>.</u>	W.	1	T	Ĩ	. 1		- 1		- 1		÷	<u>.</u>	
	- Papa	3					163	1						_ 1				
منعی . د	-Tanki Sain Sain	м	. 24															

ł

		and different second second				
	DIST.	COUNTY	ROUTE	KP TOTAL PROJECT	SHEET NO.	TOTAL SHEETS
	03	, /ED	50	1.1/1.7	60	71
etric	1	Allin	9 Alilah	2/6/2004	ED GEDLO	
	REG	STERED ENG	NEERING GEO		William X	62
	PLA	NS APPROVAL	DATE	(No.	<u>2229</u> 1-31-06	<u>_</u>)_))
	TAB	ER CONSUL	TANTS	CERTF	ed engineering	NII -
	West	Sacramer	nto, CA 9	5691	OF CAUFOR	
	JOB NO	, 1P2/3 <u>98/</u>	189-1.1	LOCATION: 38	121-F1:10	3N; 198W
	0H2 248 Sacr	amento, C	Park Driv A 95833	e, Suite 600		
	El Doi not b	rado Count e responsi	ty or its o	fficers or agent	s shall ompleter	0855
	of ele	etronic co	pies of thi	's plan sheet.	omprotor	000
NOTES: 1. Field classification c	of soils	was in accor	dance with A	STM D 2488-00 "D	Description	and
Identification of Soils (2. Rock classification of (This is a state of the solution of the solution)	(Visual— accordir	Manual Proce ng to Caltran	sdure)." s "Soil & Ro	ck Logging Classific	ation Manu	Ial
(Field Guide)", August USBR-5000, "Procedur Third Edition 1990	1996, d e for D	and Buredu o etermining U	r Keclamation nified Soil Cle	n, U.S. Department assification", Earth	ot the int Manual, Pa	erior, art II,
3. Standard Penetratio a safety hammer oper	n tests ated wi	were perform th cat-head,	ned in accor rope and pu	dance with AS1M D Illy, Drill rods were	1586-99 41 mm	using
diameter "A"-rods; so 4. Where indicated by	mpler v an aste	vas driven wi prisk (*) the datus" to f	th brass liner number of bi	rs. Iows shown is for c	nly that fr	raction
of the initial .15 m "so 5. The length of each pumber blaw counts ("	eating (sample 'N") rer	arive interval d interval is resent the "	i penetrated. shown graph standard pen	ically on the boring etration resistance"	log. Who interval in	le 1
accordance with ASTM the blow count shown	D1586 Is for	99. Where	less than 0.4 of the "stan	15 m of penetration dard penetration re	is achiev sistance"	ed,
interval actually penetr 6. Consistency of solls	ated. shown	in () where	estimated.	under som det som till som		_
 Rock Quality Design Fracture Density, as sh borings drilled in 2003 	ation (F 10wn: or . Desc	(QD), Weathei 1 this sheet, rintors were	ring, Rock Ho were used to determined in	irdness/Strength, 8 5 describe all rock 1 the field.	edding, an core from	d
8. All borings for this converted to metric ur	project 11ts.	were logged	in English u	nits, and were subs	equently	
9. Groundwater surface Boring Sheets reflect t 10. Groundwater surface	: (GWS) he fluic	elevations in Lievel in the tions are sub	the barings barings on t	indicated on the L the specified date.	og of Test	t our at
higher or lower elevation 11. Electronic media fo	ons dep r plan	ending on th view provided	e conditions	at any particular ti II, December 2004	me.	yar ut
12. The "Log of Test E 2-1.03 of Caltrans "St	lorings" andord	drawing is i Specification	ncluded with s".	plans in accordance	e with Sec	tion
As-Built Log of Test Bori the State of California re	ings shi gistratio	eet is consid on seal with	ered an infor signature, lic	mational document ense number and r	only. As egistration	such,
document. It does not at	confirr test to	n that this i the accurac	s a true and y or validity	accurate copy of of the information	the origina contained	in the
bidder, contractor or othe	er inter	ested party.				
03 ED 50	r.v	0.0-	-2.9			
	1	Λ		I		
VU. Mich	illo	6	3/1	1/08		
			BORING	GRUSSING GS 3 of 5]
NOTE: A COPY OF THIS LOG	OF TES		AVAILABLE AT	CU: 03252	BRIDGE	NO.
SACRAMENTO, CALIFORNIA.		of Teet P	oringe are	EA: 3A7111	25-0 SHEET	122 OF
of the following table	and no	otes.	orings are	are addition .	22	24
Boring Station		Offset from	"A2" Line	CIONA	L GEO	
B-1 55+99.56	3	105.45	ft Lt	Will Will	lliam	
B-3 55+46.58	3	102.13	ft Lt		lichols	́ \\
Notes:				(No. <u>2</u>	<u>~29</u> - <u>31-</u> 10	-) <u>)</u>))^
1. See Log of Test Borings 1	l of 5 foi	stationing.		CERTIFIED		
2. Stations and offset are ap table above are referenced	proximato the pi	ate. The data oposed new s	presented in t structure locat	ion	CALLFOR	ジ 1
and stationing. This table is boring sheet for the conveni	presen ence of	ted on the As any bidder, co	Built log of te ontractor or ot	st	1	72
interested party.		ĺ		_		
		24+60	17	<u>'0</u> PHAS	SE 1.	2B
LATROBE	R	DAD F	RETAI	NING WA		
LOG		TES	Т ВС	RINGS		
ARING	RE	VISION DATES (PI	RELIMINARY STAG	E ONLY)	SHEET	OF
- Coulom						

REFERENCE: CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL, (JUNE, 2007)

GROUP SYMBOLS AND NAMES								
raphic/Symbol	Group Names	Graphic/Symbol	Group Names]]				
GW	Well-graded GRAVEL Well-graded GRAVEL with SAND	CL	Lean CLAY Lean CLAY with SAND Lean CLAY with GRAVEL SANDY lean CLAY	C Consolidatio				
GP	Poorly-graded GRAVEL Poorly-graded GRAVEL with SAND		SANDY lean CLAY with GRAVEL GRAVELLY lean CLAY GRAVELLY lean CLAY with SAND	CD Collapse Po				
GW-GM	Well-graded GRAVEL with SILT Well-graded GRAVEL with SILT and SAND		SILTY CLAY SILTY CLAY with SAND SILTY CLAY with GRAVEL	CP Compaction				
GW-GC	Well-graded GRAVEL with CLAY (or SILTY CLAY) Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		SANDY SILTY CLAY with GRAVEL GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND	CO Consolidate Triaxial (AS				
GP-GM	Poorly-graded GRAVEL with SILT Poorly-graded GRAVEL with SILT and SAND		SILT SILT with SAND SILT with GRAVEL	DS Direct She				
GP-GC	Poorly-graded GRAVEL with CLAY (or SILTY CLAY) Poorly-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		SANDY SILT SANDY SILT with GRAVEL GRAVELLY SILT GRAVELLY SILT with SAND	E Expansion				
GM	SILTY GRAVEL SILTY GRAVEL with SAND	2	ORGANIC lean Clay ORGANIC lean Clay with SAND ORGANIC lean Clay with GRAVEL	Organic Cc (ASTM D 2				
Se GC	CLAYEY GRAVEL CLAYEY GRAVEL with SAND	OL	SANDY ORGANIC lean CLAY SANDY ORGANIC lean CLAY with GRAVEL GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SAND	P Permeabilit				
GC-GM	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL with SAND		ORGANIC SILT ORGANIC SILT with SAND ORGANIC SILT with GRAVEL	Particle Siz (ASTM D 4 Platicity In				
SW	Well-graded SAND Well-graded SAND with GRAVEL		SANDY ORGANIC SILT SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND	Liquid Limi				
SP	Poorly-graded SAND Poorly-graded SAND with GRAVEL		Fat CLAY Fat CLAY with SAND Fat CLAY with GRAVEL	PM Pressure N				
SW-SM	Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL	СН	SANDY TAT CLAY SANDY fat CLAY with GRAVEL GRAVELLY fat CLAY GRAVELLY fat CLAY with SAND	P Pocket Per				
SW-SC	Well-graded SAND with CLAY (or SILTY CLAY) Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		Elastic SILT Elastic SILT with SAND Elastic SILT with GRAVEL	SE Sand Equiv				
SP-SM	Poorly-graded SAND with SILT Poorly-graded SAND with SILT and GRAVEL	- МН	SANUY elastic SILI SANDY elastic SILT with GRAVEL GRAVELLY elastic SILT GRAVELLY elastic SILT with SAND	SG Specific Gr				
SP-SC	Poorly-graded SAND with CLAY (or SILTY CLAY) Poorly-graded SAND with CLAY and CRAVELY CARS IN CLAY and CRAVELY		ORGANIC fot CLAY with SAND ORGANIC fot CLAY with SAND ORGANIC fot CLAY with GRAVEL	Shrinkage				
SM	SILTY SAND SILTY SAND SILTY SAND with GRAVEL	ОН	SANDY ORGANIC fat CLAY SANDY ORGANIC fat CLAY with GRAVEL GRAVELLY ORGANIC fat CLAY GRAVELLY ORGANIC fat CLAY with SAND	(TV) Pocket Tor				
sc	CLAYEY SAND CLAYEY SAND with GRAVEL		ORGANIC elastic SILT ORGANIC elastic SILT ORGANIC elastic SILT with SAND ORGANIC elastic SILT with GRAVEL	Unconfined (ASTM D 2 Unconfined Unconfined				
SC-SM	SILTY, CLAYEY SAND SILTY, CLAYEY SAND with GRAVEL		SANDY URGANIC elastic SILI SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT GRAVELLY ORGANIC elastic SILT with SAND	Unconsolide Triaxial (AS				
PT	PEAT		ORGANIC SOIL ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL	UW Unit Weigh				
20	COBBLES COBBLES and BOULDERS	CH	SANDY ORGANIC SOIL SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL	Vane Shea				

APPARENT DENSITY OF COHESIONLESS SOILS								
Description	SPT N ₆₀ -Value (Blows / 12 in.)							
Very Loose	0 - 4							
Loose	5 - 10							

11 - 30

		1
Dense	31 - 50	
Very Dense	> 50	
		-
	MOISTURE	
Description	Criteria	
Dry	Absence of moisture, dusty, dry to the touch	
Moist	Damp but no visible water	Description
Wet	Visible free water, usually soil is below water table	Vary Caft
		very sort
PERCENT (OR PROPORTION OF SOILS	Soft
Description	Criteria	
Trace	Particles are present but estimated to be less than 5%	Medium Stiff
Few	5 to 10%	Stiff
Little	15 to 25%	

30 to 45%

50 to 100%

		PARTI	CLE SIZE				
De	scription		Size	[
Boulder			>12 in.	ł			
Cobble			3 to 12 in.		Description		
0	Coars	se	3/4 to 3 in.		Nonplatic		
Gravel Fine			No. 4 to 3/4 in.	ł			
	Coarse		No. 10 to No. 4		Low		
Sand Mediu		ım	No. 40 to No. 10				
	Fine		Fine No. 200 to No. 40		No. 200 to No. 40		
					Medium		
		CEME	NTATION				
Description			Criteria				
Weak Crumi little		Crumt little	oles or breaks with handling or finger pressure.		High		
Moderate	e	Crumbles or breaks with considerable finger pressure.					

Low Medium High

tiff Very Stiff

Hard

DIST	COUNTY	ROUTE	Т	OTAL PROJECT	SHEET No	TOTAL SHEETS
03	(ED	50		0.0-2.9		
	TIFIED ENGI	VEERVING GEOLD	DGIS	<u>3/11/08</u> ST DATE StSUM <u>E. 1</u> No. <u>2</u>	AL GEOL Illiam Nichols 229	- 12120
The S shall comp	State of Californ not be respons Deteness of elec	AL DATE ia or its officers ible for the accur stronic copies of t	or a racy this j	ngents or plan sheet.	ENGINEERIN LOGIST CALLFO	
BL/ 243 WES Fil	ACKBURN (7 FRONT ST T SACRAMEN e No. 1072	CONSULTING REET TO, CA 95691	3 1	QUINCY ENGI 3247 RAMOS CIR SACRAMENTO, CA	NEER I CLE 95827	NG '–2501

	CONSISTENCY OF COHESIVE SOILS							
Unconfined Compressive Strength (tsf)	Pocket Penetrometer Measurement (tsf)	Torvane Measurement (tsf)	Field Approximation					
<0.25	<0.25	<0.12	Easily penetrated several inches by fist					
0.25 to 0.50	0.25 to 0.50	0.12 to 0.25	Easily penetrated several inches by thumb					
0.50 to 1.0	0.50 to 1.0	0.25 to 0.50	Penetrated several inches by thumb with moderate effort					
1 to 2	1 to 2	0.50 to 1.0	Readily indented by thumb but penetrated only with great effort					
2 to 4	2 to 4	1.0 to 2.0	Readily indented by thumbnail					
> 4.0	> 4.0	> 2.0	Indented by thumbnail with difficulty					

PLASTICITY OF FINE-GRAINED SOILS

Criteria

A 1/8-in. thread cannot be rolled at any water content.

The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit.

The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.

It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.

	BOREHOLE IDENTIFICATION						
Symbol	Hole Type	Description					
Size	А	Auger Boring					
Size	R P	Rotary drilled boring Rotary percussion boring (air)					
Size	R	Rotary drilled diamond core					
Size	HD HA	Hand driven (1-inch soil tube) Hand Auger					
•	D	Dynamic Cone Penetration Boring					
	СРТ	Cone Penetration Test (ASTM D 5778-95)					
	0	Other					

			SOIL	LEG	END			
E NO.								
122	LA	ROBE	: ROAI	JUNL	JERCF	(055)	٧G	
MILE	10		TEO			04-	£ F	
9	LO	GUF	IE2	I BO	RING	540	T 5	
	TS BEARING			REVIS	ION DATES		SHEET	OF
REVIS	ION DATES	04/18/08					23	24

.

RELATIVE STR	RELATIVE STRENGTH OF INTACT ROCK						
Term	Uniaxial Compressive Strength (PSI)						
Extremely Strong	> 30,000						
Very Strong	14,500 - 30,000						
Strong	7,000 - 14,500						
Medium Strong	3,500 - 7,000						
Weak	700 – 3,500						
Very Weak	150 - 700						
Extremely Weak	< 150						

LEGEND OF ROCH	K MATERIALS

\bigotimes	IGNEOUS ROCK
	SEDIMENTARY ROCK
1	METAMORPHIC ROCK

	BEDDING	SPACING
	Description	Thickness / Spacing
Mas	ssive	Greater than 10 ft
Ver	y thickly bedded	3 to 10 ft
Thio	ckly bedded	1 to 3 ft
Мос	derately bedded	4 in. to 1 ft
Thir	nly bedded	1 in. to 4 in.
Ver	y thinly bedded	3/8 in. to 1 in.
Lam	ninated	Less than 3/8 in.
	·	
IGNE	OUS AND MET	AMORPHIC ROCK
Des	scription	Average crystal diameter
Very coar or peamo	rse-grained atic	>3/8 inch
Coarse-g	rained	3/16-3/8 inch
Medium-	grained	1/32-3/16 inch
Fine-grai	ned	0.04-1/32 inch
Aphanitic seen with	(cannot be the ungided eve)	<0.04 inch

SHEET OF

		DIST	COUNTY	ROUTE	TOTAL PROJECT	SHEET	TO SHE
BEDDING	SPACING	03	(ED	50	0.0-2.9		
Description	Thickness / Spacing		PHI T	ilarl	3 /11 /09		
Massive	Greater than 10 ft	CER	TIFIED ENGI	NEERING GEOL	DGIST DATE	NAL GEOL	
Very thickly bedded	3 to 10 ft				₹ <u> </u>	Nichols	- 1
Thickly bedded	1 to 3 ft	PLA	NS APPROV	AL DATE	(No Exp.,	<u>2229</u> 1-31-1	
Moderately bedded	4 in. to 1 ft	The shall	State of Californ	ia or its officers	or agents	D ENGINEERII	
Thinly bedded	1 in. to 4 in.	com	pleteness of elec	tronic copies of t	this plan sheet.	OF CALIFO	
Very thinly bedded	3/8 in. to 1 in.	BL	ACKBURN (G QUINCY ENG		NG
Laminated	Less than 3/8 in.	WES Fil	T SACRAMEN e No. 1072	TO, CA 9569	1 SACRAMENTO, C	A 95827	-250
IGNEOUS AND MET GRAIN SIZE DE	AMORPHIC ROCK SCRIPTORS						
Description	Average crystal diameter						
Very coarse-grained or pegmatic	>3/8 inch						
Coarse-grained	3/16-3/8 inch						
Medium-grained	1/32-3/16 inch	1					
Fine-arained	0.04-1/32 inch	1					
	, ,						

-- 04/18/08

Description Chemical weathering-Discoloration and/or oxidation Mechanical Weathering-Grain boundary condi-tions (disaggregation) primarily for granitics and some coarse-grained sediments Texture and solutioning General Charact	eristics
Description Chemical weathering—Discoloration and/or oxidation Mechanical Weathering— Grain boundary condi– tions (disaggregation)) primarily for granitics and some coarse—grained sediments Texture and solutioning General Charact	eristics
Body of rock Fracture Surfaces primarily for granitics and some coarse-grained sediments Texture Solutioning	
FreshNo discoloration, not oxidized.No discoloration or oxidation.No separation, intact (tight).No change.No solutioning.Hammer rings when cr are struck.	ystalline rocks
Slightly WeatheredDiscoloration or oxida- tion is limited to sur- face of, or short dis- tance from, fractures; some feldspar crystals are dull.Minor to complete discolorization or oxidation of most surfaces.No visible separation, intact (tight).Preserved.Minor leaching of some solu- ble minerals may be noted.Hammer rings when cr rocks are struck. Body not weakened.	ystalline · of rock
Moderately WeatheredDiscoloration or oxida- tion extends from frac- tures usually throughout; 	when f rock
Intensely Weathered Discoloration or oxidation throughout; all feldspars and Fe-Mg minerals are altered to clay to some extent; or chemical alteration produces in- situ disaggregation, see grain boundary conditions. All fracture surfaces friable. All fracture surfaces friable. All fracture surfaces friable. All fracture surfaces friable. All fracture surfaces friable. All fracture surfaces friable.	k with e broken y manual jammer blow lanes of oient or hair— ets. Rock is
Decomposed Discolored or oxidized throughout, but resistant minerals such as quartz may be unaltered; all feldspars and Fe-Mg minerals are completely altered to clay. Complete separation of grain boundaries (disaggregated). Resembles a soil, partial or complete remnant rock structure may be preserved; leaching of soluble minerals usually complete. Can be granulated by Resistant minerals such quartz may be present "stringers" or "dikes".	hand. h as : as
Combination descriptors (such as "slightly weathered to fresh") are used where equal distribution of both weathering characteristics is present over significant i where characteristics present are "in between" the diagnostic features. However, combination descriptors should not be used where significant, identifiable zones delineated. Only two adjacent descriptors may be combined. "Very intensely weathered" is the combination descriptor for "intensely weathered to decomposed".	ntervals or s can be
ROCK LEGE	END
PREPARED FOR THE DESIGN OVERSIGHT BRIDGE NO. LATROBE ROAD UNDE	RCROSSIN
DEPARTMENT OF TRANSPORTATION NAME: Tim Osterkamp 0.9 LOG OF TEST BOR	INGS 5 of

ENGINEERING SERVICES	GEOTECHNICAL SERVICES	PREPARED FOR THE	DESIGN OVERSIGHT	BRIDGE NO.	
PREPARED R	M D Robertson	STATE OF CALIFORNIA	Num Tim Octorkom	25-0122	<u> </u>
			NAME: ITM OSTERKump	POST MILE	1
CHECKED B	W. E. Nichols	DEPARTMENT OF TRANSPORTATION	1	0.9	
4/22/08 LATROBE ROAD UC LEGENDS.DWG	ORIGINAL SCALE IN INCH FOR REDUCED PLANS	ES 1 2 3	CU 03252 EA 3A7111	DISREGARD PRIN EARLIER REVIS	NTS BEARING

REFERENCE: CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL, (JUNE, 2007)

	ROCK HARDNESS								
Description	Criteria								
Extremely Hard	Specimen cannot be scratched with a pocket knife; no steel marks left on surface.								
Very Hard	Specimen cannot be scratched with a pocket knife; steel marks left on surface.								
Hard	Specimen can be scratched with a pocket knife with difficulty (heavy pressure).								
Moderately Hard	Specimen can be scratched with a pocket knife with light to moderate pressure.								
Moderately Soft	Specimen can be grooved 1/6 in. deep with a pocket knife with moderate or heavy pressure.								
Soft	Specimen can be grooved or gouged easily by a pocket knife with light pressure, can be scratched with fingernail.								
Very Soft	Specimen can be readily indented, grooved or gouged with fingernail, or carved with a pocket knife.								

FRACTURE DENSITY						
Description	Observed Fracture Density					
Unfractured	No fractures.					
Very slightly fractured	Lengths greater than 3 feet.					
Slightly fractured	Lengths from 1 to 3 feet with few lengths less than 1 foot or greater than 3 feet.					
Moderately fractured	Lengths mostly in 4 in. to 1 foot range with most lengths about 8 in.					
Intensely fractured	Lenghts average from 1 to 4 in. with scattered fragmented intervals with lengths less than 4 in.					
Very intensely fractured	Mostly chips and fragments with a few scattered short core lengths.					
mbination descriptors (such as	"Very intensely to intensely fractured") are used where equal distribution of					

both fracture density characteristics is present over a significant interval or exposure, or where characteristics are "in between" the descriptor definitions. Only two adjacent descriptors may be combined.

WEATHERING DESCRIPTORS FOR INTACT ROCK

APPENDIX B

- Footing Data (provided by QEI)
- Calculations for WSD Design and LRFD Design

Transmitted by:

From:	Patrick Fischer
Date:	03/01/2012
Project:	Latrobe Road UC WB Off Ramp UC

Completed by:

Client:	Quincy Engineering, Inc.
Bridge Designer:	Danny Mossman
Date Completed:	03/01/2012

Note: Please insert N/A where applicable

Footing Foundation Design Data										
Support No.	Design Method (WSD or	Finish Grade Elev. (ft)	BOF Elevation (ft)	Footing Size (ft)		Permissible Settlement under Service Load (in) *				
	LRFD)			В	L					
Abutment 1	WSD	605.00	598.00	18.00	40.00	1.00				
Bent 2	LRFD	608.00	598.00	12.00	14.00	1.00				
Abutment 3	WSD	605.00	598.00	18.00 40.00		1.00				

 *Based on CALTRANS' current practice, the total permissible settlement for a shallow footing is one inch for structures with continuous spans or multi-column bents, and two inches for simple span structures.

		Scour Data		
Support No	Degradation Scour	Base Flood	Total Scour	
Support No.	(ft)	Contraction	Local	(ft)
Abutment 1	N/A	N/A	N/A	N/A
Bent 2	N/A	N/A	N/A	N/A
Abutment 3	N/A	N/A	N/A	N/A

	LRFD Service Limit State I											
			Total L		Permanent Load *							
Support No.	Vertical	Effective Dimensions (ft)		Horizontal Load (kip)		Vertical	Effective Dimensions (ft)					
	(kip)	B'	Ľ	Longitudinal Direction	Transverse Direction	(kip)	B'	Ľ				
Abutment 1	2,412	N/A	N/A	N/A	N/A	1,112	N/A	N/A				
Bent 2	1,230	12.00	14.00	34	8	626	12.00	14.00				
Abutment 3	2,174	N/A	N/A	N/A	N/A	1,026	N/A	N/A				

* See table 3.4.1-2 in the AASHTO LRFD Bridge Design Specifications for components of permanent load.

LRFD Strength and Extreme Event Limit States										
	St	rength Limit Stat	te	Extreme Event Limit State						
Support No	(0	Controlling Group	o)	(0	ontrolling Group)					
Support No.	Vertical Load Effectiv		nensions (ft)	Vertical Load	Effective Dir	mensions (ft)				
	(kip)	B'	Ľ	(kip)	B'	Ľ				
Abutment 1	N/A	N/A	N/A	1,112	N/A	N/A				
Bent 2	1,957	12.00	14.00	626	12.00	14.00				
Abutment 3	N/A	N/A	N/A	1,026	N/A	N/A				

NOMINAL BEARING RESISTANCE -- STRENGTH LIMIT STATE (AASHTO Bridge Design Specifications)

Date: 2/28/2012 Project: Latrobe Rd WB Off Ramp UC BCI No: 1072.8

Support: Abutment 1 and 3, B = 18 ft, L = 40 ft Boring: R-99-B3 and R-99-B2 (Taber 1999) Base of Footing: 598.0 ft

Equation: $q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + 0.5 \gamma BN_{\gamma m} C_{w\gamma}$

in which:		D_w	C_{wq}	$C_{w\gamma}$			
$N_{cm} = N_c s_c i_c$		0	0.5	0.5			
$N_{qm} = N_q s_q d_q i_q$		D _f	1.0	0.5			
$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$		>1.5B+D _f	1.0	1.0			
where:							
q n = nominal bearing resistance	N_{c} , N_{a} , and N_{γ} = bearing capacity factors						

c = cohesion (psf)

 N_c , N_q , and N_{γ} = bearing capacity factors

 $C_{wq} \& C_{w\gamma} =$ correction factors for location of ground water

B = footing width (feet)

 s_c , s_{γ} , and s_q = footing shape correction factors d_q = correction factor to account for shearing resistance

 D_f = footing embedment depth (feet)

 γ = total (moist) unit weight of soil (pcf)

in material above bearing level i_c , i_γ , and i_q = load inclination factors

 D_w = depth to ground water taken from the ground surface (feet)

 $d_q =$

	Effe	ctive	<u> </u>					D	Nominal		Allowable		
	B'	imensions	C _{wq}	$C_{w\gamma}$	s _c	Sγ	S_q	Res	istance Factor =	= 1.0	Fact	or of Safety	= 3
Case 1	(fe	eet)		-11-12-1				(psf)	(ksf)	(tsf)	(psf)	(ksf)	(tsf)
1	10.0	40.0	0.50	0.50	1.18	0.90	1.18	29402	29.40	14.7	9801	9.80	4.9
2	12.0	40.0	0.50	0.50	1.22	0.88	1.21	32140	32.14	16.1	10713	10.71	5.4
3	14.0	40.0	0.50	0.50	1.25	0.86	1.25	34762	34.76	17.4	11587	11.59	5.8
4	18.0	40.0	0.50	0.50	1.32	0.82	1.32	39661	39.66	19.8	13220	13.22	6.6
5	20.0	40.0	0.50	0.50	1.36	0.80	1.35	41937	41.94	21.0	13979	13.98	7.0
6	22.0	40.0	0.50	0.50	1.40	0.78	1.39	44098	44.10	22.0	14699	14.70	7.3
7	24.0	40.0	0.50	0.50	1.43	0.76	1.42	46144	46.14	23.1	15381	15.38	7.7
8	26.0	40.0	0.50	0.50	1.47	0.74	1.46	48074	48.07	24.0	16025	16.02	8.0
Case 2													
1													
2	•			2									
3													
4		1.1.1.1.1											
5													-
6													
7													
8		4. 14											
		Bea	aring Car	bacity Fac	tors			Shape Corr	ection Facto	rs			
			$N_c =$	46.12				φ	s	c	Sγ	\$	9
			$N_q =$	33.30				$\phi = 0$	1 + (B/5L)	1.0	1	.0

Note: If L > 5B, then s_c , s_{γ} , and $s_q = 1.0$ (Geotechnical Engineering Circular No. 6, FHWA-SA-02-054, pgs 55-56)

 $\phi > 0$

 $1 + (B/L)(N_q/N_c)$

1 - 0.4(B/L)

 $1 + (B/L)tan\phi$

 $N_{\gamma} = 48.03$

•

Estimate unfactored vertical pressure at prescribed settlement

 Date:
 2/28/2012
 Support:
 Abutment 1 and 3, B = 18 ft, L = 40 ft

 Project:
 Latrobe Rd WB Off Ramp UC
 Boring:
 R-99-B3 and R-99-B2 (Taber 1999)

 BCI No:
 1072.8
 Base of Footing:
 598.0 ft

Equation:

 $qo = (Se \times Es \times \beta z) / (1-v^2) \times A^{1/2}$

				V				
Se, Settlement (in.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
B', Effective Footing Width (ft.)	10.0	12.0	14.0	18.0	20.0	22.0	24.0	26.0
L', Effective Footing Length (ft.)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
L/B Ratio	4.00	3.33	2.86	2.22	2.00	1.82	1.67	1.54
βz (shape and rigidity factor)	1.18	1.15	1.12	1.10	1.09	1.08	1.08	1.08
A, Footing Area (sq. ft)	400	480	560	720	800	880	960	1040
Square Root A	20.00	21.91	23.66	26.83	28.28	29.66	30.98	32.25
Es, Soil Modulus (ksf)	3000	3000	3000	3000	3000	3000	3000	3000
v, Poisson's Ratio	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
qo (unfactored vertical pressure-ksf)	16.74	14.89	13.54	11.67	10.98	10.42	9.93	9.51
qo (kPa)	801	713	648	559	526	499	475	455

Note: Unfactored vertical pressure determined by equation 4.4.7.2.2-1 (Caltrans Bridge Design Specifications, November 2003, pg 4-20).

B'	qo	
(feet)	(ksf)	
10.0	16.7	
12.0	14.9	
14.0	13.5	
18.0	11.7	<-
20.0	11.0	
22.0	10.4	
24.0	9.9	
26.0	9.5	

For B' = 18', Permissable = 11.7 ksf.

Gross = Permissable plus initial overburden, = 11.7 ksf + (7' x 60 pcf)/1000 lbs/k, = 12.12 ksf

NOMINAL BEARING RESISTANCE -- STRENGTH LIMIT STATE (AASHTO Bridge Design Specifications)

Date: 2/28/2012 Project: Latrobe Rd WB Off Ramp UC BCI No: 1072.8

Support: Bent 2, B = 12 ft, L = 14 ft Boring: A-99-B1 (Taber 1999)

Base of Footing: 598.0 ft

Equation: $q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + 0.5 \gamma BN_{\gamma m} C_{w\gamma}$

in which:		D_w	C_{wq}	$C_{w\gamma}$	
$N_{cm} = N_c s_c i_c$		0	0.5	0.5	
$N_{qm} = N_q s_q d_q i_q$	$D_{\rm f}$	1.0	0.5		
$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$		$>1.5B+D_f$	1.0	1.0	
where:					
q_n = nominal bearing resistance	N_c , N_q , and $N_\gamma =$	bearing capa	acity factors		
c = cohesion (psf)	$C_{wq} \& C_{w\gamma} =$	correction factors for location of ground water			
B = footing width (feet)	s_c , s_γ , and $s_q =$	footing shap	e correction	factors	

 γ = total (moist) unit weight of soil (pcf)

 D_f = footing embedment depth (feet)

- d_q = correction factor to account for shearing resistance

in material above bearing level

 i_c , i_{γ} , and $i_q = \text{load inclination factors}$

 $D_{\rm w}$ = depth to ground water taken from the ground surface (feet)

Resistance	Factor	$(\Phi_h) =$	0.45	I
		(10)	0.45	L

									Stren	gth Limit	State			
	Solve for Nor	minal Bearing	Resistar	<u>ice</u>										
	Effe	ective							Nominal		Fact	Factored Nominal		
	Footing D	Dimensions	Cwa	Cwy	S _c	Sr	s _a	Bea	ring Resista	ince	Bear	Bearing Resistance		
Case 1	B (fe	Pet)	~ 4			/		(nsf)	(kef)	= 1.0 (tsf)	(psf)	ance Factor:	= 0.45 (tsf)	
1	4.0	4.0	0.65	0.50	1.72	0.60	1.70	47619	47.62	23.8	21429	21.43	10.7	
2	6.0	6.0	0.65	0.50	1.72	0.60	1.70	49348	49.35	24.7	22207	22.21	11.1	
3	8.0	8.0	0.65	0.50	1.72	0.60	1.70	51078	51.08	25.5	22985	22.98	11.5	
4	10.0	10.0	0.65	0.50	1.72	0.60	1.70	52807	52.81	26.4	23763	23.76	11.9	
5	12.0	12.0	0.65	0.50	1.72	0.60	1.70	54536	54.54	27.3	24541	24.54	12.3	
6	14.0	14.0	0.65	0.50	1.72	0.60	1.70	56265	56.26	28.1	25319	25.32	12.7	
7	18.0	18.0	0.65	0.50	1.72	0.60	1.70	59723	59.72	29.9	26875	26.88	13.4	
8	20.0	20.0	0.65	0.50	1.72	0.60	1.70	61452	61.45	30.7	27653	27.65	13.8	
Case 2		1												
1	7.0	14.0	0.65	0.50	1.36	0.80	1.35	43137	43.14	21.6	19411	19.41	9.7	
2	8.0	14.0	0.65	0.50	1.41	0.77	1.40	45259	45.26	22.6	20367	20.37	10.2	
3	9.0	14.0	0.65	0.50	1.46	0.74	1.45	47299	47.30	23.6	21285	21.28	10.6	
4	10.0	14.0	0.65	0.50	1.52	0.71	1.50	49257	49.26	24.6	22166	22.17	11.1	
5	11.0	14.0	0.65	0.50	1.57	0.69	1.55	51132	51.13	25.6	23010	23.01	11.5	
6	12.0	14.0	0.65	0.50	1.62	0.66	1.60	52926	52.93	26.5	23816	23.82	11.9	
7	13.0	14.0	0.65	0.50	1.67	0.63	1.65	54636	54.64	27.3	24586	24.59	12.3	
8	14.0	14.0	0.65	0.50	1.72	0.60	1.70	56265	56.26	28.1	25319	25.32	12.7	
		Bea	aring Car	bacity Fac	tors			Shape Corr	ection Facto	rs				

ring Capacity Factors	Shupe Corri	Shape correction I delors							
$N_c = 46.12$	φ	s _c	Sγ	s_q					
$N_q = 33.30$	$\phi = 0$	1 + (B/5L)	1.0	1.0					
$N_{\gamma} = 48.03$	φ > 0	$1 + (B/L)(N_q/N_c)$	1 - 0.4(B/L)	$1 + (B/L)tan\phi$					

Note: If L > 5B, then s_c , s_{γ} and $s_q = 1.0$ (Geotechnical Engineering Circular No. 6, FHWA-SA-02-054, pgs 55-56)

Estimate unfactored vertical pressure at prescribed settlement

Date:	2/28/2012 Support	Bent 2, $B = 12$ ft, $L = 14$ ft
Project:	Latrobe Rd WB Off Ramp UC Boring	· A-99-B1 (Taber 1999)
BCI No:	1072.8 Base of Footing	· 598.0 ft

Equation:

 $qo = (Se \times Es \times \beta z) / (1-v^2) \times A^{1/2}$

Se, Settlement (in.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
B, Footing Width (ft.)	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
L, Footing Length (ft.)	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
L/B Ratio	2.00	1.75	1.56	1.40	1.27	1.17	1.08	1.00
βz (shape and rigidity factor)	1.09	1.08	1.08	1.07	1.07	1.07	1.06	1.06
A, Footing Area (sq. ft)	98	112	126	140	154	168	182	196
Square Root A	9.90	10.58	11.22	11.83	12.41	12.96	13.49	14.00
Es, Soil Modulus (ksf)	3000	3000	3000	3000	3000	3000	3000	3000
v, Poisson's Ratio	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
qo (unfactored vertical								
pressure-ksf)	31.37	29.14	27.33	25.81	24.52	23.41	22.43	21.57
qo (kPa)	1502	1395	1308	1236	1174	1121	1074	1033

Note: Unfactored vertical pressure determined by equation 4.4.7.2.2-1 (Caltrans Bridge Design Specifications, November 2003, pg 4-20).

B'	qo	
(feet)	(ksf)	
7.0	31.4	
8.0	29.1	
9.0	27.3	
10.0	25.8	1.1%
11.0	24.5	
12.0	23.4	<
13.0	22.4	
14.0	21.6	

NOMINAL BEARING RESISTANCE -- STRENGTH LIMIT STATE (AASHTO Bridge Design Specifications)

Date: 2/28/2012 Project: Latrobe Rd WB Off Ramp UC BCI No: 1072.8

Support: Abutment 1& 3 Ret Walls, B = 12-24 ft, L = 12-20 ft Boring: R-99-B2&B3 (Taber) and A-12-104&O-12-110 (BCI) Base of Footing: Varies (check with worst case condition)

Equation: $q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + 0.5 \gamma BN_{\gamma m} C_{w\gamma}$

in which:		D_w	C_{wq}	C _{wγ}
$N_{cm} = N_c s_c i_c$		0	0.5	0.5
$N_{qm} = N_q s_q d_q i_q$		D _f	1.0	0.5
$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$		>1.5B+D _f	1.0	1.0
where:				
a_n = nominal bearing resistance	$N N and N \dots =$	hearing cana	city factors	

Ч	n	=	nommai	bearing	resistance

c = cohesion (psf)B = footing width (feet) N_c , N_q , and N_{γ} = bearing capacity factors

 C_{wq} & $C_{w\gamma}$ = correction factors for location of ground water

 s_c , s_{γ} , and s_q = footing shape correction factors

 $\gamma = \text{total (moist) unit weight of soil (pcf)}$

 D_f = footing embedment depth (feet)

 d_q = correction factor to account for shearing resistance

in material above bearing level

 i_c , i_{γ} , and $i_q = \text{load inclination factors}$

 $D_{\rm w}$ = depth to ground water taken from the ground surface (feet)

												WSD		
	Solve for Nominal Bearing Resistance] [
	Effe	ective	<u>.</u>	Nominal			Allowable							
	Footing D	Dimensions	Cwa	Cwy	S _c	Sv	S _a	Bea	ring Resista	ince		Bearing		
Casa 1	B' (fe	L'				/	4	(pef)	istance Factor =	= 1.0 (tof)	(nof)	ctor of Safety	t = 3	
Case 1	73	12.0	0.38	0.50	1 44	0.76	1.42	(psr) 16452	(KSI) 16.45	(151)	(psr) 5484	(KSI)		
1	0.0	12.0	0.30	0.50	1.77	0.70	1.72	19210	10.45	0.2	6072	5.40	2.7	
2	11.0	12.0	0.30	0.50	1.54	0.70	1.55	10219	10.22	9.1	6627	0.07	3.0	
3	12.2	12.0	0.38	0.50	1.00	0.05	1.04	19880	19.88	9.9	0027	0.03	3.5	
4	13.3	12.0	0.38	0.50	1.80	0.56	1.77	21288	21.29	10.6	7096	7.10	3.5	
5	9.0	20.0	0.38	0.50	1.32	0.82	1.32	18517	18.52	9.3	6172	6.17	3.1	
6														
7														
8														
Case 2														
1														
2														
3														
4	and the second													
5														
6													-	
1												-		
8														
		Bea	aring Cap	bacity Fac	tors			Shape Corre	ection Factor	rs	1	1		
			$N_c =$	46.12				ф	S	с	Sγ	5	⁶ q	
			$N_q =$	33.30				$\phi = 0$	1 + ()	B/5L)	1.0	1	1.0	
	$N_{\gamma} = 48.03$							φ > 0	1 + (B/L	(N_q/N_c)	1 - 0.4(B/I	.) 1 + (E	3/L)tan¢	

Note: If L > 5B, then s_c , s_{γ} , and $s_q = 1.0$ (Geotechnical Engineering Circular No. 6, FHWA-SA-02-054, pgs 55-56)

ELASTIC CONSTANTS OF VARIOUS SOILS MODIFIED AFTER US DEPARTMENT OF THE NAVY (1982) AND BOWLES (1982)

	Typical Range of Value	es		
		Poisson's		
Soil Type	Young's Modulus, Es	Ratio, v		
	(ksf)	(dim)		
Clay: Soft sensitive Medium stiff	50-300	0.4-0.5		
to stiff	300-1,000	(undrained)		
Very stiff	1,000-2,000			
Loess	300-1,200	0.1-0.3		
Silt	40-400	0.3-0.35		
Fine sand:				
Loose	160-240			
Medium dense	240-400	0.25		
Dense	400-600			
Sand:				
Loose	200-600	0.2-0.35		
Medium dense	600-1,000			
Dense	1,000-1,600	0.3-0.4		
Gravel:			Participant of the second s	in a thered rock:
Loose	600-1,600	0.2-0.35	For	Mediala
Medium dense	1,600-2,000		Sectors.	
Dense	2,000-4,000	0.3-0.4	Duse	ESE 3000
	Estimating Es from N ⁽⁾	 (1) 	o de la construcción de la constru	Y= 0.35
Soil Type		Young's Modulus, Es	-	
		(ksf)	-	
Silts, sandy silts, slig	htly cohesive mixtures	8N1 ⁽²⁾		
, , , , , , , , , , , , , , , , , , ,				
Clean fine to medium sands	a sands and slightly silty	$14N_1$		
Coarse sands and san	ds with little gravel	$20N_1$		
Sandy gravel and gra	vels	$24N_1$		
	Estimating Es from S _u	3)		
Soil Type		Young's Modulus, Es	-	
		(ksf)	-	
Soft consitive alar		1005 1 0005		
Madian at 66 and 66	-1	$4003_{\rm u}$ -1,0003 _u		
Medium stiff to stiff o	clay	$1,500S_{u}-2,400S_{u}$		
Very stiff clay		$3,000S_u-4,000S_u$		

(1) N = Standard Penetration Test (SPT) resistance.

(2) $N_1 = SPT$ corrected for depth.

(3) S_u = Undrained shear strength (ksf).

Source: Caltrans Bridge Design Specifications, November 2003, page 4-19.

EQUIVALENT FLUID WEIGHTS (EFWs)

Project: Latrobe Road West Bound Off Ramp UC BCI No.: 1072.8 Date: 2/28/2012 By: PFF

EFWs for static condition determined using equations in; Naval Facilities (NAVFAC) Design Manual 7.2 for active (K_A) and passive (K_P) lateral coefficients; and USACE Retaining and Floodwalls Manual (EM 1110-2-2502) for at-rest (K_O) lateral coefficient. EFWs for seismic loading conditions determined using the Mononobe-Okabe equation for active and passive lateral coefficients K_{AE} and K_{PE} .

Unit wieght of soil (pcf), 120.0 Internal friction angle of soil (degrees), <45°) 33.0 φ Inclination of wall with respect to vertical (degrees), β = 0.0 Wall friction angle (degrees), 22.0 $(\delta = 2\phi/3)$ δ = Inclination of soil surface above wall (degrees), i = 0.0 Peak Ground Acceleration (g), PGA = 0.20 Horizontal seismic acceleration coefficient, $k_h =$ 0.10 Vertical seismic acceleration coefficient, 0.00 k_v Lateral wall displacement (inches), d = $1.00 (1 \le d \ge 8)$

		Factor	of Safet	y			
$\mathbf{EFW} = \mathbf{K}\boldsymbol{\gamma}$	EFW	1.0	1.5	2.0			
	Active	36			psf/f	K _A =	0.29
*	Passive	407	271	203	psf/f	K _P =	3.39
	At rest	55			psf/f	K _O =	0.46
	Active _{EQ}	40			psf/f	$K_{AE} =$	0.33
*	Passive _{EQ}	384	256	192	psf/f	$K_{PE} =$	3.20
	At rest _{EQ}	62			psf/f		
Coefficient of Fr							

Static Loading

Active Pressure Coefficient (KA):

 $\mathbf{K}_{\mathbf{A}} = [\cos\phi/\{1 + [\sin\phi(\sin\phi - \cos\phi \tan i)]^{0.5}\}]^2$

Passive Pressure Coefficient (K_P):

 $K_{\rm P} = \left[\cos\phi / \{1 - \left[\sin\phi(\sin\phi + \cos\phi \tan i) \right]^{0.5} \} \right]^2$

At-rest Pressure Coefficient (Ko):

$$K_{O} = (1 - \sin\phi) \cdot (1 + \sin i)$$

Seismic Loading

Seismic Active Pressure Coefficient (KAE):

$$K_{AE} = \frac{\cos^2(\phi - \theta - \beta)}{\cos\theta\cos^2\beta\cos(\delta + \beta + \theta)} \times \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\right]^{-2}$$

Seismic Passive Pressure Coefficient (K_{PE}):

$$K_{PE} = \frac{\cos^{2}\left(\phi - \theta + \beta\right)}{\cos\theta\cos^{2}\beta\cos(\delta - \beta + \theta)} \times \left[1 - \sqrt{\frac{\sin\left(\phi + \delta\right)\sin\left(\phi - \theta + i\right)}{\cos\left(\delta - \beta + \theta\right)\cos\left(i - \beta\right)}}\right]^{-2}$$

- 1) For Seismic Active Case: $\phi \ge \theta + i$
- 2) For Seismic Passive Case: $\phi \ge \theta i$
- 3) $k_h \approx 0.74 A (A/d)^{0.25}$; A = PGA (Section 11.6.5, AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007)
- 4) For $k_h \le 0.2$, neglect k_v
- 5) For $k_h \ge 0.2$, $k_v \approx k_h/2$
- 6) Seismic Passive case
- neglects wall friction

* Level Backfill Condition Only.

Analysis of CY-CB Attenuation Prediction Equation vs ARS Online Results US 50 / Latrobe Rd. WB Off-Ramp UC

Analysis of CY-CB Attenuation Prediction Equation vs ARS Online Results US 50 / Latrobe Rd. WB Off-Ramp UC

CY-CB Spread	sheet Results
T (sec)	CB-CY S(a)
0.010	0.14382
0.020	0.14643
0.022	0.14868
0.025	0.15199
0.029	0.15749
0.032	0.16112
0.035	0.16658
0.036	0.16846
0.040	0.17578
0.042	0.17956
0.044	0.18331
0.045	0.18522
0.046	0.18712
0.048	0.19088
0.050	0.19466
0.055	0.20714
0.000	0.21900
0.005	0.23108
0.007	0.23054
0.075	0.25504
0.080	0.26625
0.085	0.27720
0.090	0.28767
0.095	0.29796
0.100	0.30773
0.110	0.32259
0.120	0.33597
0.130	0.34768
0.133	0.35071
0.140	0.35754
0.150	0.36618
0.160	0.36758
0.170	0.36800
0.180	0.36793
0.190	0.30730
0.200	0.34931
0.240	0.33375
0.250	0.32643
0.260	0.31878
0.280	0.30485
0.290	0.29818
0.300	0.29182
0.320	0.28035
0.340	0.26957
0.350	0.26451
0.360	0.25960
0.380	0.25030
0.400	0.24166
0.420	0.23164
0.440	0.22220
0.450	0.21792
0.480	0.20562
0,500	0.19823
0.550	0.18245
0.600	0.16939
0.650	0.15840
0.660	0.15580
0.700	0.14905
0.750	0.14096
0.800	0.13404
0.850	0.12792
0.900	0.12239
0.950	0.11743
1.000	0.11289
1.100	0.10082
1.200	0.09002
1.300	0.00229
1.400	0.01480

Place	ARS Onlin	e Determii	nistic Data	a Here		For Com	parsion Plots Special	s of Min. Spre into Cells	ctra, Paste
		"Paste"				Min. Spect	rum for CA	Min Sprectru	m for ECSZ
T (sec)	Base S(a)	Basin Factor	Near Fault Factor	Final Adj. S(a)	Diff. (%)	T (sec)	S (a)	T (sec)	S (a)
0.01	0.143	1	1	0.143	1%	0.01	0.197		
0.02	0.145	1	1	0.145	1%	0.02	0.201		
0.022	0.147	1	1	0.147	1%	0.022	0.204		
0.025	0.151	1	1	0.151	1%	0.025	0.208		
0.029	0.155	1	1	0.155	1%	0.029	0.214		
0.03	0.156	1	1	0.156	1%	0.03	0.216		
0.032	0.16	1	1	0.16	1%	0.032	0.221		
0.035	0.165	1	1	0.165	1%	0.035	0.220		
0.030	0.107	1	1	0.107	1%	0.030	0.231		
0.042	0.178	1	1	0.178	1%	0.042	0.246		
0.044	0.182	1	1	0.182	1%	0.044	0.251		
0.045	0.184	1	1	0.184	1%	0.045	0.254		
0.046	0.186	1	1	0.186	1%	0.046	0.256		
0.048	0.189	1	1	0.189	1%	0.048	0.262		
0.05	0.193	1	1	0.193	1%	0.05	0.267		
0.055	0.205	1	1	0.205	1%	0.055	0.284		
0.06	0.218	1	1	0.218	1%	0.06	0.3		
0.067	0.23	1	1	0.23	1%	0.067	0.317		
0.007	0.235	1	1	0.235	1%	0.007	0.323		
0.075	0.241	1	1	0.241	1%	0.07	0.348		
0.08	0.264	1	1	0.264	1%	0.08	0.362		
0.085	0.275	1	1	0.275	1%	0.085	0.376		
0.09	0.285	1	1	0.285	1%	0.09	0.389		
0.095	0.295	1	1	0.295	1%	0.095	0.401		
0.1	0.305	1	1	0.305	1%	0.1	0.414		
0.11	0.32	1	1	0.32	1%	0.11	0.43		
0.12	0.333	1	1	0.333	1%	0.12	0.445		
0.13	0.345	1	1	0.345	1%	0.13	0.458		
0.133	0.348	1	1	0.348	1%	0.133	0.461		
0.14	0.355	1	1	0.355	1%	0.14	0.468		
0.15	0.365	1	1	0.365	1%	0.15	0.476		
0.10	0.365	1	1	0.365	1%	0.10	0.470		
0.18	0.365	1	1	0.365	1%	0.18	0.472		
0.19	0.364	1	1	0.364	1%	0.19	0.469		
0.2	0.363	1	1	0.363	1%	0.2	0.466		
0.22	0.346	1	1	0.346	1%	0.22	0.444		
0.24	0.331	1	1	0.331	1%	0.24	0.423		
0.25	0.324	1	1	0.324	1%	0.25	0.413		
0.26	0.316	1	1	0.316	1%	0.26	0.403		
0.28	0.302	1	1	0.302	1%	0.28	0.386		
0.29	0.296	1	1	0.296	1%	0.29	0.377		
0.3	0.209	1	1	0.209	1 70	0.3	0.309		
0.34	0.270	1	1	0.270	1%	0.34	0.334		
0.35	0.262	1	1	0.262	1%	0.35	0.333		
0.36	0.257	1	1	0.257	1%	0.36	0.327		
0.38	0.248	1	1	0.248	1%	0.38	0.315		
0.4	0.24	1	1	0.24	1%	0.4	0.303		
0.42	0.23	1	1	0.23	1%	0.42	0.291		
0.44	0.22	1	1	0.22	1%	0.44	0.279		
0.45	0.216	1	1	0.216	1%	0.45	0.273		
0.46	0.212	1	1	0.212	1%	0.46	0.267		
0.48	0.204	1	1	0.204	1%	0.48	0.257		
0.5	0.197	1	1 00	0.19/	1%	0.5	0.248		
0.55	0.1//	1	1.02	0.181	1%	0.55	0.223		
0.65	0.101	1	1.04	0.100	1%	0.0	0.203		[
0,667	0.144	1	1.067	0.154	1%	0.667	0.18		
0.7	0.137	1	1.08	0.148	1%	0.7	0.171		
0.75	0.127	1	1.1	0.14	1%	0.75	0.158		
0.8	0.119	1	1.12	0.133	1%	0.8	0.148		
0.85	0.111	1	1.14	0.127	1%	0.85	0.138		
0.9	0.105	1	1.16	0.121	1%	0.9	0.13		
0.95	0.099	1	1.18	0.117	0%	0.95	0.122		
1	0.093	1	1.2	0.112	1%	1	0.115		
1.1	0.083	1	1.2	0.1	1%	1.1	0.103		
1.2	0.075	1	1.2	0.09	1%	1.2	0.093		
1.3	0.062	1	1.2	0.082	U%	1.3	0.084		
1.4	0.002	1	1.4	0.074	170	1.4	0.070		

	Special	into Cells				
Min. Spect	rum for CA	Min Sprectrum for ECS				
T (sec)	S (a)	T (sec)	S (a)			
0.01	0.197					
0.02	0.201					
0.022	0.204					
0.025	0.208					
0.029	0.214					
0.03	0.216					
0.032	0.221					
0.035	0.228					
0.036	0.231		-			
0.04	0.241		-			
0.042	0.240					
0.044	0.251					
0.046	0.254					
0.048	0.262					
0.05	0.267					
0.055	0.284					
0.06	0.3					
0.065	0.317					
0.067	0.323					
0.07	0.333					
0.075	0.348					
0.08	0.362					
0.085	0.376					
0.09	0.389					
0.095	0.401					
0.1	0.414					
0.11	0.43					
0.12	0.445					
0.13	0.458					
0.133	0.461					
0.14	0.468					
0.15	0.476					
0.16	0.476		-			
0.17	0.474					
0.10	0.472					
0.13	0.466					
0.22	0.444					
0.24	0.423					
0.25	0.413					
0.26	0.403					
0.28	0.386					
0.29	0.377					
0.3	0.369					
0.32	0.354					
0.34	0.34	I				
0.35	0.333	ļ				
0.36	0.327					
0.38	0.315					
0.4	0.303		_			
0.42	0.291					
0.44	0.279					
0.45	0.273					
0.40	0.207					
0.40	0.237					
0.5	0.240					
0.55	0.223					
0.65	0.185	ł				
0.667	0.18	ł				
0.7	0 171	1				
0.75	0 158	ł				
0.8	0,148					
0,85	0,138	1				
0.9	0,13	i – – –				
0.95	0.122					
1	0.115					
1.1	0.103	1				
1.2	0.003	1				

Analysis of CY-CB Attenuation Prediction Equation vs ARS Online Results US 50 / Latrobe Rd. WB Off-Ramp UC

CY-CB Spreadsheet Results						
T (sec)	CB-CY S(a)					
1.500	0.06859					
1.600	0.06302					
1.700	0.05815					
1.800	0.05383					
1.900	0.04999					
2.000	0.04662					
2.200	0.04097					
2.400	0.03641					
2.500	0.03446					
2.600	0.03267					
2.800	0.02955					
3.000	0.02690					
3.200	0.02472					
3.400	0.02284					
3.500	0.02198					
3.600	0.02118					
3.800	0.01972					
4.000	0.01841					
4.200	0.01731					
4.400	0.01633					
4.600	0.01543					
4.800	0.01462					
5.000	0.01387					

Place ARS Online Deterministic Data Here "Paste"								
T (sec)	Base S(a)	Basin Factor	Near Fault Factor	Final Adj. S(a)	Diff. (%)			
1.5	0.057	1	1.2	0.068	1%			
1.6	0.052	1	1.2	0.063	0%			
1.7	0.048	1	1.2	0.058	0%			
1.8	0.045	1	1.2	0.053	2%			
1.9	0.041	1	1.2	0.05	0%			
2	0.039	1	1.2	0.046	1%			
2.2	0.034	1	1.2	0.041	0%			
2.4	0.03	1	1.2	0.036	1%			
2.5	0.029	1	1.2	0.034	1%			
2.6	0.027	1	1.2	0.033	1%			
2.8	0.025	1	1.2	0.029	2%			
3	0.022	1	1.2	0.027	0%			
3.2	0.021	1	1.2	0.025	1%			
3.4	0.019	1	1.2	0.023	1%			
3.5	0.018	1	1.2	0.022	0%			
3.6	0.018	1	1.2	0.021	1%			
3.8	0.016	1	1.2	0.02	1%			
4	0.015	1	1.2	0.018	2%			
4.2	0.014	1	1.2	0.017	2%			
4.4	0.014	1	1.2	0.016	2%			
4.6	0.013	1	1.2	0.015	3%			
4.8	0.012	1	1.2	0.015	3%			
5	0.012	1	1.2	0.014	1%			

For Comparsion Plots of Min. Sprectra, Paste Special into Cells							
Min. Spect	rum for CA	Min Sprectrum for ECSZ					
T (sec)	S (a)	T (sec)	S (a)				
1.5	0.07						
1.6	0.064						
1.7	0.059						
1.8	0.054						
1.9	0.051						
2	0.047						
2.2	0.041						
2.4	0.037						
2.5	0.035						
2.6	0.033						
2.8	0.03						
3	0.027						
3.2	0.025						
3.4	0.023						
3.5	0.022						
3.6	0.021						
3.8	0.02						
4	0.018						
4.2	0.017						
4.4	0.016						
4.6	0.015						
4.8	0.015						
5	0.014						

95

US 50/Latrobe Rd WB Off-ramp UC

(unlock spreadsheet "shmi")

Comparison spreadsheet of the 2008 USGS Probabilistic Seismic Hazard Data and ARS Online Probabilistic Data Spectral Accelerations Points from USGS Website at http://earthquake.usgs.gov/research/hazmaps/products_data/2008/data/

* Note: This spreadsheet uses the given latitude and longitude data provided by the user to estimate spectral acceleration values with a probability of exceedence 5% in 50 yrs (or 975 yr return period). The four spectral acceleration data points plotted on the graph are from the USGS website and are based on a 0.05 degree grid. Basic interpolation is used to estimate intermediate values inside each grid. Raw Data points are provided in the tabs of this spreadsheet. Corner grid spectral acceleration data are shown in the "calculation" tab.

Place ARS Online Probabilistic Data Here "Paste"							
T (sec)	Base Spectrum S(a)	Basin Factor	Near Fault Factor	Final Adj. Spectrum S(a)			
0.01	0.112	1	1	0.112			
0.02	0.136	1	1	0.136			
0.022	0.14	1	1	0.14			
0.025	0.145	1	1	0.145			
0.029	0.152	1	1	0.152			
0.03	0.153	1	1	0.153			
0.032	0.156	1	1	0.156			
0.035	0.16	1	1	0.16			
0.036	0.161	1	1	0.161			
0.04	0.166	1	1	0.166			
0.042	0.168	1	1	0.168			
0.044	0.171	1	1	0.171			
0.045	0.172	1	1	0.172			
0.046	0.173	1	1	0.173			
0.048	0 175	1	1	0 175			
0.05	0.177	1	1	0.177			
0.055	0.182	1	1	0.182			
0.06	0.187	1	1	0.187			
0.065	0.191	1	1	0.191			
0.067	0.192	1	1	0.192			
0.07	0.195	1	1	0.195			
0.075	0.199	1	1	0.199			
0.08	0.202	1	1	0.202			
0.085	0.206	1	1	0.206			
0.09	0.209	1	1	0.209			
0.095	0.213	1	1	0.213			
0.1	0.216	1	1	0.216			
0.11	0.222	1	1	0.222			
0.12	0.228	1	1	0.228			
0.13	0.234	1	1	0.234			
0.133	0.236	1	1	0.236			
0.14	0.24	1	1	0.24			
0.15	0.245	1	1	0.245			
0.16	0.25	1	1	0.25			
0.17	0.254	1	1	0.254			
0.18	0.259	1	1	0.259			
0.19	0.263	1	1	0.263			
0.2	0.268	1	1	0.268			
0.22	0.264	1	1	0.264			
0.24	0.26	1	1	0.26			
0.25	0.259	1	1	0.259			

Analysis of ARS Online Results vs USGS Deaggregation Hazard (Adj. By CT)										
Period (sec)	USGS Interpolated Spectral Accel.	Adj. for Near Fault Effect	Adj. for Soil Amplification	Adj. For Basin Effect	Final Adj. USGS Spec Accel	ARS Online Final Adj. Spect. Accel.	% Difference (bet. USGS & ARS Online)			
0	0.111	1.000	1.007	1.000	0.112	0.112	-0.1%			
0.2	0.266	1.000	1.003	1.000	0.267	0.268	-0.3%			
0.3	0.246	1.000	1.006	1.000	0.247	0.252	-1.9%			
1	0.121	1.000	1.000	1.000	0.121	0.121	0.1%			
Max % Difference =										

USGS Deaggregation Hazard (Beta) with Near Field and Basin Factors									
Period (sec)	INPUT USGS Deagg. Spec Accel	Adj. for Near Fault Effect	Adj. For Basin Effect	Final Adj. USGS Deagg Spec Accel	ARS Online Final Adj. Spect. Accel.	% Difference (bet. USGS & ARS Online)			
0	0.11	1.000	1.000	0.110	0.112	1.8%			
0.1	0.211	1.000	1.000	0.211	0.216	2.4%			
0.2	0.2663	1.000	1.000	0.266	0.268	0.6%			
0.3	0.244	1.000	1.000	0.244	0.252	3.3%			
0.5	0.19	1.000	1.000	0.190	0.194	2.1%			
1	0.12	1.000	1.000	0.120	0.121	0.8%			
2	0.068	1.000	1.000	0.068	0.068	0.0%			
3	0.04172	1.000	1.000	0.042	0.042	0.7%			
4	0.02843	1.000	1.000	0.028	0.029	2.0%			
5	0.02311	1.000	1.000	0.023	0.023	0.5%			

Max % Difference = 2.1%

0.26	0.257	1	1	0.257
0.28	0.254	1	1	0.254
0.29	0.253	1	1	0.253
0.3	0.252	1	1	0.252
0.32	0.244	1	1	0.244
0.34	0.236	1	1	0.236
0.35	0.233	1	1	0.233
0.36	0.229	1	1	0.229
0.38	0.223	1	1	0.223
0.4	0.217	1	1	0.217
0.42	0.212	1	1	0.212
0.44	0.207	1	1	0.207
0.45	0.205	1	1	0.205
0.46	0.202	1	1	0.202
0.48	0.198	1	1	0.198
0.5	0.194	1	1	0.194
0.55	0.182	1	1	0.182
0.6	0.172	1	1	0.172
0.65	0.164	1	1	0.164
0.667	0.161	1	1	0.161
0.7	0.156	1	1	0.156
0.75	0.149	1	1	0.149
0.8	0.143	1	1	0.143
0.85	0.136	1	1	0.136
0.9	0.131	1	1	0.131
0.95	0.126	1	1	0.126
1	0.121	1	1	0.121
1.1	0.112	1	1	0.112
1.2	0.104	1	1	0.104
1.3	0.097	1	1	0.097
1.4	0.092	1	1	0.092
1.5	0.086	1	1	0.086
1.6	0.082	1	1	0.082
1.7	0.078	1	1	0.078
1.8	0.074	1	1	0.074
1.9	0.071	1	1	0.071
2	0.068	1	1	0.068
2.2	0.061	1	1	0.061
2.4	0.055	1	1	0.055
2.5	0.052	1	1	0.052
2.6	0.05	1	1	0.05
2.8	0.046	1	1	0.046
3	0.042	1	1	0.042
3.2	0.039	1	1	0.039
3.4	0.036	1	1	0.036
3.5	0.034	1	1	0.034
3.6	0.033	1	1	0.033
3.8	0.031	1	1	0.031
4	0.029	1	1	0.029
4.2	0.027	1	1	0.027
4.4	0.026	1	1	0.026
4.6	0.025	1	1	0.025
4.8	0.024	1	1	0.024
5	0.023	1	1	0.023

APPENDIX C

Caltrans Review Comment and BCI Response

95% Comment Resolution Table

Plans (P)						Resolution
or	Page	Comments	Name	Desponse	Resolved	/Initial
Specials				Response	(Y)/(N)	
(S)						
CALTR	ANS		OSFP/ OGS			
COMM	ENTS					
Draft	Title Pg	Include "03-ED-50"	Eric	"03-ED-50" is included on the Title page		
Foundation			Fredrickson			
Report			& Mark			
			Hagy			
Draft	Header	Include "Hwy 50". We need to know	Eric	Reference to Hwy 50 is included in the		
Foundation	info	what route PM 0.9 pertains to.	Fredrickson	header information		
Report			& Mark			
			Hagy			
Draft	Pg 15	Table 6- Verify information show on	Eric	Table 6 is updated/verified to be		
Foundation		the plans match report.	Fredrickson	consistent with the latest plans		
Report			& Mark			
			Hagy			