Auburn Office: 11521 Blocker Drive, Suite 110 • Auburn, CA 95603 (530) 887-1494 • Fax (530) 887-1495

Modesto Office: (209) 522-6273 West Sacramento Office: (916) 375-8706

Geotechnical - Construction Services - Forensics

File No. 1072.14 June 4, 2012

Mr. Brent Lemon, P.E. Quincy Engineering, Inc. 3247 Ramos Circle Sacramento, CA 95827

Subject: GEOTECHNICAL DESIGN/MATERIALS REPORT - ADDENDUM #1

US 50/Latrobe Road West Bound On- and Off-Ramps PM 0.02/1.4, 03-ED-50, EA 03-2E5101 El Dorado County, California

Dear Mr. Lemon:

Blackburn Consulting (BCI) prepared this addendum to our Geotechnical Design/Materials Report (GDR), dated March 30, 2012, for the subject project. This addendum addresses Caltrans comments to the GDR and foundations for new overhead signs CS-60 and CS-61.

To prepare this addendum, BCI:

- Reviewed comments by Caltrans, email submittal dated 4/13/2012
- Discussed the proposed overhead sign locations and design with Quincy Engineering, Inc. (QEI)
- Reviewed the project overhead sign plans by QEI dated 4/18/12 (Sheets S-1 through S-5, SD-1 through SD-4 and SQ-1 through SQ-6)
- Logged a cored test boring at the location of overhead sign CS-61
- Performed laboratory tests on soil and rock samples obtained from the test boring
- Performed engineering analysis to develop our conclusions and recommendations

Proposed Overhead Signs

CS-60 is a two-post truss, Type I-S post per Caltrans Standard Plans, to be located at the west-bound off-ramp. The foundation is shown as CIDH piles, 54" diameter and 18' deep, per Standard Plans. Existing subsurface data near this sign, including test boring R-99-B3 and test pit O-12-110, was submitted with the GDR report. No further exploration was performed at this location.

CS-61 is a single-post truss, Type I-VIII post per Caltrans Standard Plans, to be located at southbound El Dorado Hills Blvd. The foundation is expected to be either a CIDH pile, 60" diameter and 25' deep, or spread footing, 13'x18' in dimension, per Standard Plans. BCI completed test boring RDC-12-119 near this sign location to supplement a previous test pit (O-12-105).

Figure 1 shows the project vicinity and Figure 2 the exploration locations.

Supplemental Field Exploration

BCI completed Boring RDC-12-119 on May 16, 2012 to a depth of 31.6 feet. Our drilling sub-consultant (Taber Drilling) advanced the boring using 4" solid auger to a depth of 3.5 feet and HQ wire-line rock coring from 3.5 feet to 31 feet. We placed continuous core samples in labeled core boxes. Rob Pickard, BCI engineering geologist, logged the borings and retrieved samples for laboratory testing. We show the boring log and the Log of Test Borings (LOTB) drawing for the west-bound off-ramp bridge in Appendix A.

Subsurface Conditions

As described in the GDR, the site is underlain by variably weathered and fractured metavolcanic rock. Rock consistent with this description is present at both CS-60 and CS-61 sign locations.

At sign CS-60, boring R-99-B3 encountered 8 feet of fill (described as clayey sand with gravel and occasional cobble/boulder) underlain by meta-sedimentary and meta-volcanic rock to depth 26 feet. Core recovery within the rock was 69-94% and Rock Quality Designation (RQD)¹ between 10-72%. We classify this rock as having "poor to fair" rock mass quality based on Table 4.4.8.1.2A, Caltrans Bridge Design Specifications, November 2003.

At Sign CS-61, boring RDC-12-119 encountered 2.0 feet of pavement section (asphalt and baserock), underlain by meta-volcanic rock to depth 31.6 feet. Core recovery within the rock was nearly 100% and RQD between 52 to 100%. We classify this rock as having "good" rock mass quality based on Table 4.4.8.1.2A, Caltrans Bridge Design Specifications. Test Pit O-12-105 encountered silty gravel to depth 1.7 feet, with refusal on metavolcanic rock at this depth.

 $^{^{1}}$ RQD = Rock Quality Designation, defined as the sum of length of solid core pieces greater than 4 inches long divided by the total length of core run.

We did not observe serpentinite or other ultramafic rock types (a host rock for naturally occurring asbestos (NOA), or significant bands of fibrous (asbestiform) minerals within the rock cores.

Groundwater

Groundwater was present at approximately 7 feet deep in boring R-99-B3 (drilled February 1999), near the fill/rock interface. We did not encounter groundwater within the augered portion of boring RDC-12-119 (drilled May 2012). In general, we expect the surface soil/fill materials and upper portions of decomposed rock to be seasonally wet/saturated. Shallow groundwater and seepage can be expected along the soil/rock interface during the winter months or extended periods of rainfall.

Laboratory Testing

BCI completed the following laboratory tests on rock cores obtained from the test boring:

- Rock Compression (ASTM D7012)
- Point Load Strength Index (ASTM 5731)
- Sulfate content (CTM 417), chloride content (CTM 422), pH (CTM 643) and resistivity testing (CTM 643)

Table 1 summarizes results of the rock compression tests.

Table 1 – Nock Compression Tests (ASTWD/012)										
Test Boring	Core Depth (feet)	Compressive								
		Strength (psi)								
RDC-12-119	12.2-12.7	540*								
RDC-12-119	16.9-17.5	4,510								

Table 1 – Rock Compression Tests (ASTM D7012)

*core broke along healed fracture

Results of Point Load Strength Index (PLI) on sections of hard rock show PLI from 290 to 841 psi. Based on a conversion factor of 24.5 to estimate unconfined compressive strength from PLI^2 , compressive strengths range from 7,114 psi to 20,615 psi. Weaker rock cores, with PLI of 54-369 psi, correlate to compressive strength estimates of 1,334-9,040 psi.

We attach the laboratory test reports in Appendix B.

Table 2 shows results of the corrosivity tests from RDC-12-119. For comparison, corrosion tests previously completed for this project are included in Table 2.

²ASTM D5731

Job File No. 1072.14 June 4, 2012

Exploration/ Test Location ID	Sample No.	Sample Depth (feet)	pН	Resistivity (ohm-cm)	Chloride Content (ppm)	Sulfate Content (ppm)
RDC-12-119	Run 1	3.5-4.5	8.4	5,700	11	51
A-12-101	B7	0.5-5	8.5	2,676	7	12
A-12-104	B3	0.5-5	8.7	2,931	4	ND
A-12-111	B1	8-9	7.7	3,110	29	19
O-12-114	B2	5.5-6.5	7.9	1,810	10	18
R07-B1*	B1-1	5.5	7.01	1,930	16	52
R07-B1*	Run 1	15.5	7.55	1,050	32	154
A07-B2*	B2-4	21	7.25	3,220	6	19
A01-B2**	CB-2	0-6	7.0	3,880	8	5
A01-B5**	CB-5	0-6	6.9	3,347	13	8

 Table 2 - Corrosion Test Results (CTM 417, 422, 643)

*From BCI (2008) **From Espana (2002)

These results indicate non-corrosive soil and weathered rock conditions.

Foundation Recommendations

Based on the above, conditions are suitable for CIDH pile foundations (per Standard Plans) at both CS-60 and CS-61 locations, and for a spread footing at CS-61. At CS-60, Standard Plan CIDH depth of 18 feet will extend through about 8 feet of rocky fill and 10 feet into fractured rock. At CS-61, Standard Plan CIDH depth of 25 feet will extend through 2 feet of fill and about 23 feet into relatively hard rock.

The foundation drilling will require coring into the rock unit and may encounter seasonal ground water seepage along the soil/rock interface. These conditions are discussed below in Construction Considerations.

For footing design at CS-61, Standard Plan loading of 2.5 ksf is available within weathered rock underlying the existing pavement section. If necessary, a reduced footing dimension can be considered (or value engineered) by using drilled rock anchors to resist uplift and overturning loads. For pre-stressed rock anchors, use a minimum free-length of 10 feet and bond-length of 15 feet, ultimate grout-to-rock bond strength of 150 psi and working bond stress equal to 50% of the ultimate strength. Assuming 6-inch diameter drilled anchors, an ultimate design load of 500 kips per anchor can be developed within the rock unit (allowable load of 250 kips). Mechanical anchors can also be considered to engage the rock mass.

The actual quantity, spacing, length and diameter of anchors should be based on uplift loads determined by the designer. The type of anchors, grout (or resin) and installation method must be consistent with Caltrans Standard Specifications and approved by QEI and BCI prior to construction. Actual tensile capacity is the responsibility of the contractor and requires verification by proof testing during construction.

Construction Considerations

Caving of unconsolidated fill and soil overlying the rock can occur during excavation for the CIDH pile; use temporary casing for ground control, as needed.

CIDH drilling into rock will require coring at both sign locations. The rock varies from "moderately to slightly weathered", "soft to very hard" and "intensely to slightly fractured". Drilling within rock may require the use of equipment specifically tooled for "hard" rock excavation. The contractor should review the boring logs, including the RQD and compressive strength results, and plan accordingly.

Ground water seepage into CIDH pile excavations may be encountered during drilling, especially during winter construction. Use wet placement method for construction.

For footing construction (CS-61), excavation into the rock unit may be locally difficult and air tools/chiseling may be necessary.

Limitations

We assume the soil and groundwater conditions encountered in the subsurface explorations are representative of the conditions at the sign locations. Actual conditions between exploration points can be different. If differing site conditions are encountered, contact BCI immediately to provide additional recommendations.

Appendix A presents logs of borings and test pits. The lines designating the interface between soil types are approximate. The transition between material types may be abrupt or gradual. Our recommendations are based on the final logs, which represent our interpretation of the field logs, general knowledge of the site, and geological conditions.

Modern design and construction are complex, with many regulatory sources/restrictions, involved parties, construction alternatives, etc. It is common to experience changes and delays. The owner should set aside a reasonable contingency fund based on complexities and cost estimates to cover changes and delays.

Please call if you have questions on this addendum or require additional information.

Sincerely;

BLACKBURN CONSULTIN

Rick Sowers, P.E., C.E.C Senior Project Manager

Patrick Fischer, C.E.G. Principal

FIGURES:

Figure 1: Vicinity Map Figure 2: Site Plan

APPENDIX A:

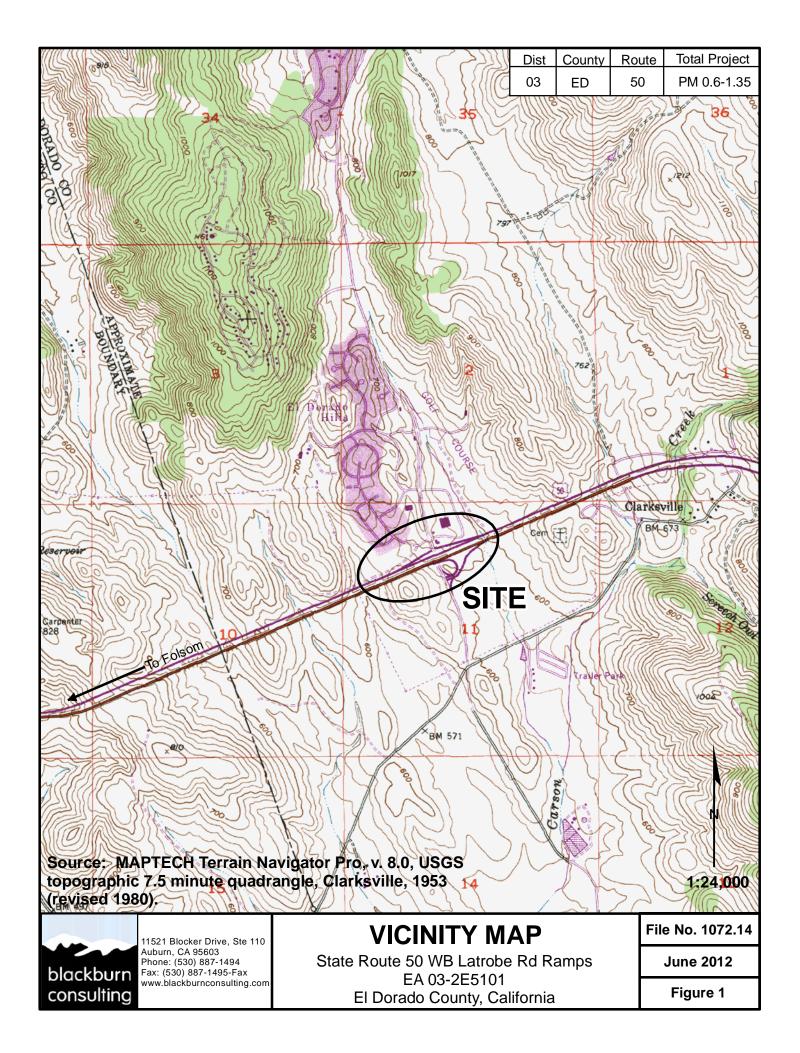
Boring Log RDC-12-119 Log of Test Borings, Latrobe Road WB Off-Ramp UC (Sheet 1) Legend of Logs

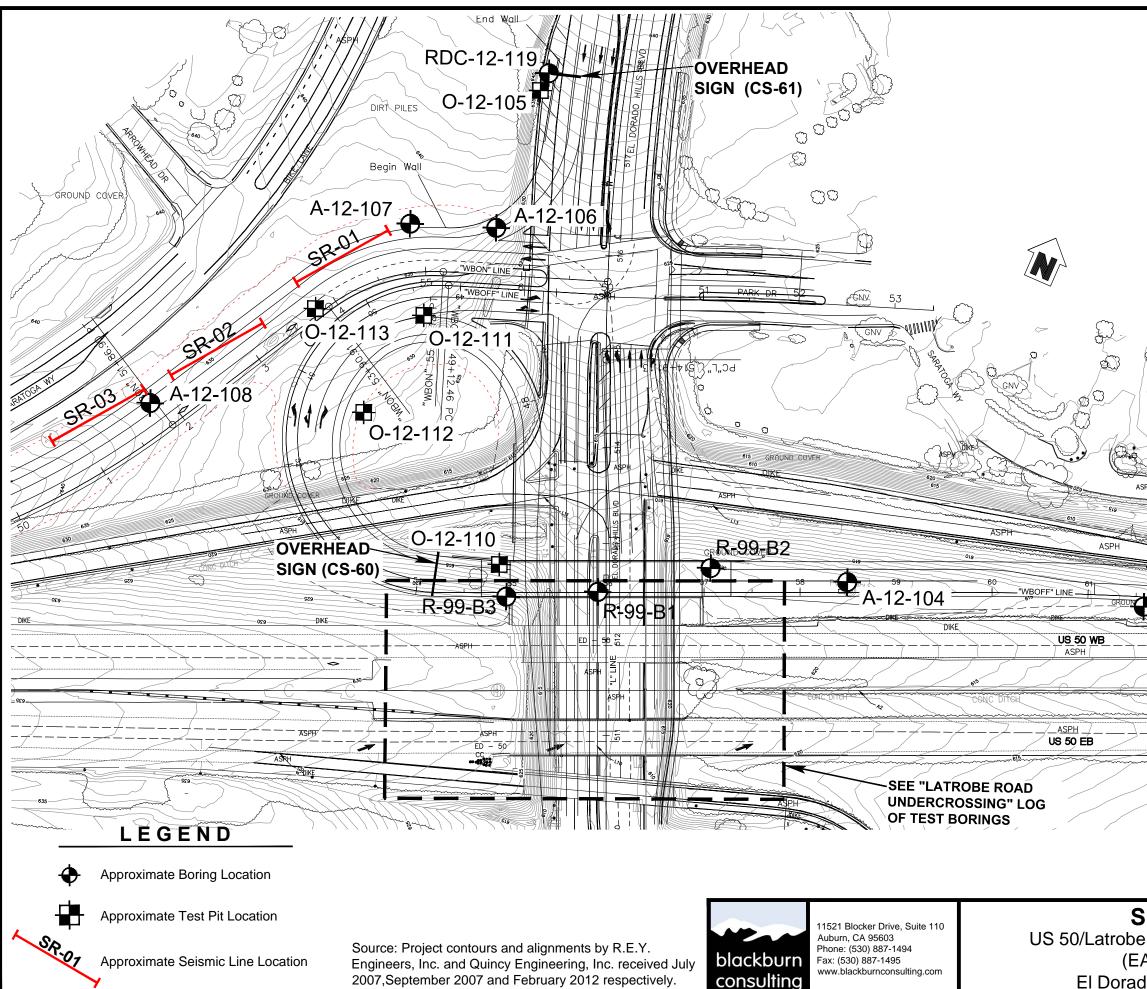
APPENDIX B:

Laboratory Test Results

APPENDIX C:

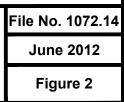
Core Photos


APPENDIX D:


Response to Caltrans Comments

Figures

Figure 1 – Vicinity Map Figure 2 – Site Plan

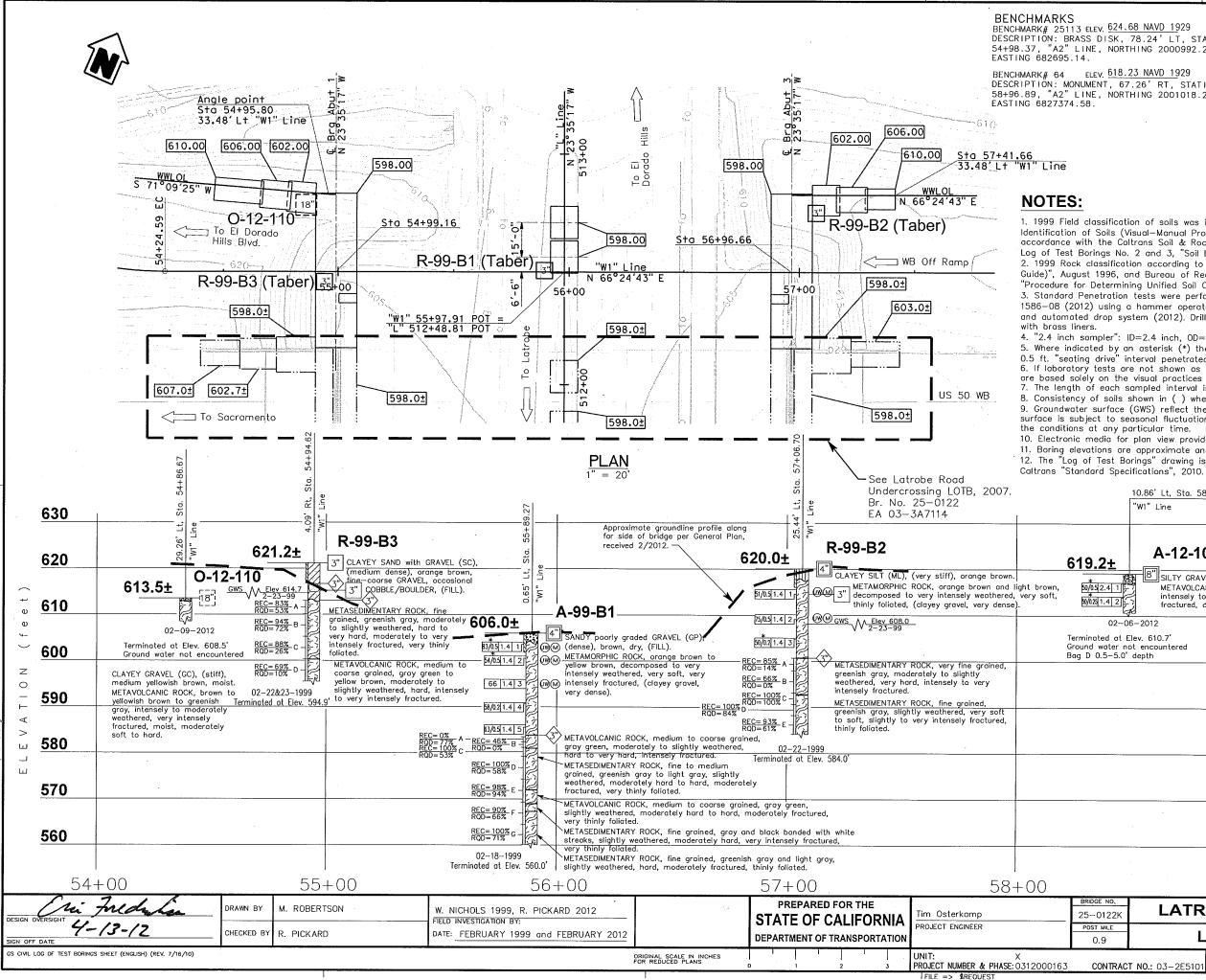


			1	I	
	DIST	COUNTY	ROUTE	TOTAL PF	ROJECT
	03	ED	50	0.6/1	.35
Ĵ~~~~]{		Et.
	SARA TOCA	The second		(ens) (cons)	
	X		610		
ASPH			Men De	REES TREES	PT
A-12-10)3 ,, <u>ASPH</u> ED - 50		A-	12-102	
• 61		<u> </u>		7	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Dike	
		ASPH	ACC ACCURATION OF THE ACCURATI		65+174 y
-					

**SITE PLAN** US 50/Latrobe Road WB Ramps Project (EA # 03-2E5101) El Dorado County, California Scale 1"=100'



# **APPENDIX** A


Boring Logs RDC-12-119 Log of Test Borings, Latrobe Road WB Off-Ramp UC (Sheet1of4) Legend of Logs



LOGGE RCP	D BY	1	BEGIN 5-16	I DATE <b>5-12</b>	COMPLETION DA 5-16-12	TE BOREHOL	ΕL	OCA	TION (	Lat/L	ong c	or No	rth/E	ast an	d Datun	ר)		HOLE ID	-12-11	9	
DRILLIN Tabe		ONTRA	CTOR			BOREHOL ~78.56'						ation,	Line	)				SURFACE ~636.2	ELEVAT	-	
DRILLIN Rota		ethod Vire-L				DRILL RIG Diedric		D12	D									BOREHO 3.8 in	LE DIAME	TER	
SAMPL			AND SIZE(S	6) (ID)		SPT HAMN	SPT HAMMER TYPE									HAMMER	EFFICIEN	ICY, ERi			
BOREH	OLE	BACKF	ILL AND COI				GROUNDWATER DURING DRILLING AFTER DRILLING (DATE) READINGS not measured							ATE)	TOTAL D 31.6 ft	EPTH OF	BORING				
ELEVATION (ft)	DEPTH (ft)	Material Graphics		[	DESCRIPTION		Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	Moisture Content (%)	Dry Unit Weight (pcf)	Strength (psi)	Drilling Method	Casing Depth	R	emarks		
634.15	1 2 3		Aggregate SILTY GR/ dry METAMOF fine-graine	AVEL (GN base. AVEL (GN RPHIC RC	<ul> <li>M); medium dense; o</li> <li>M); medium dense; y</li> <li>DCK, METAVOLCAN</li> <li>um-grained, grayish</li> <li>oft to soft, very inten</li> </ul>	ellowish brown;															
632.15	4		METAMOF	RPHIC RC d to medi to slightl	DCK, METAVOLCAN um-grained, gravish y weathered, soft to			Run 1			65	65					PL				
630.15	6 7		son, mode	acty IId				Run 2			100	100					PL				
628.15	8 9		dipping 60 Verv intens	°, from 8 t selv fractu	red. shear (clav. par												PL				
626.15	10 11		dipping 60	°, from 9 t	o 11.8 feet.																
	12 13		METAMOF fine-graine hard, very	nd aravish	DCK, METAVOLCAN green, slightly weat actured.	NIC ROCK, hered, very		Run 3			100	52		147	UC =540						
622.15 620.15	14 15 16																PL				E
618.15	17		Joint dippir	ng 60°.				Run 4			100	100		172	UC =5410		PL PL PL				
	19																PL				
	21		Joint dippir	ng 65°.				Run			100	86					PL PL				
	23 24		Joint dippir	ng 75°.				5									PL PL PL				
	25	±:///	l		(continued)																
			2 1152 ²		onsulting er Drive, Suite 11 95603	0		C	EPOR BOR IST. 03			ITY	E NAI			0	STMILI . <b>6/1.4</b>		EA	) C-12-1 072.14	119
blao con			1 11011	e: (530) (530) 88	887-1494 7-1495					)/La	trol	be F	Rd V PRE	/В С	<b>)n- an</b> ED BY	d Of	f-Ran	DAT	E  7-12	HEET <b>1 of 2</b>	

EI EVATION (#)		DEPTH (ft)	Material Graphics	DESCRIPTION	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	Moisture Content (%) Drv I Init Wainht	(pcf)	Strength (psi)	Drilling Method	Casing Depth	Remarks
610		26		Joint dipping 45°. METAMORPHIC ROCK <i>(continued).</i> Joint dipping 80°.	Run 5 Run			100	86						
608	.15	27 28 29			6			100	100					PL PL	
606		30 31													
604	.15	32		Bottom of borehole at 31.6 ft bgs											
602	.15	33 34 35		This Boring Record was developed in accordance with the Caltrans Soil & Rock Logging, Classification, and Presentation Manual (2010) except as noted on the Soil or Rock Legend or below.											
600															
598	.15	38													
596	.15	40													
594	.15	41 42													
592	.15	43													
590	.15	45 46													
588		47 48													
/24/12 985		49 50													
9 819:501 (584		51													
5 BR - STANDARD 1072.14L0G.GPJ BCI 2010 L0G.GLB 5/24/12 20 0 28 88 98 28 89 98		53 54													
14LOG.		55	1												
D 1072				Blackburn Consulting		EPOR BORI			COF	RD					HOLE ID RDC-12-119
NDAR	1			11521 Blocker Drive, Suite 110	D	IST. 03	С	OUN ED		F	ROUT <b>50</b>	ΓE		STMILE .6/1.4	EA 03-1072.14
- st⊧	a	ckb	ourr	Auburn, CA 95603 Phone: (530) 887-1494	P	ROJEC		R BR	idge De R		E 3 Or	n- and		f-Ramp	
^{5 BF}	on	sul	ting	Fax: (530) 887-1495		RIDGE				PREF RC	ARE			r	DATE SHEET 5-17-12 2 of 2

LOGGE RCP			BEGIN DATE <b>2-6-12</b>	COMPLETION DATE 2-6-12	BOREHOLE 38° 39' 1					or N	lorth	/East a	and Dat	um)		HOLE ID 0-12-	.105		
		ONTRA			BOREHOLE	LOC	ATION	(Offse	et, St	tatio	n, Li	ne)				SURFACE ~634.0	ELEVA	ΓΙΟΝ	
DRILLI	NG M	ETHOD	- <u></u> .		DRILL RIG	cava	ation									BOREHOL		ETER	
SAMPL NA	ER T	YPE(S)	AND SIZE(S) (ID)		SPT HAMME											HAMMER	EFFICIE	NCY, ERi	
BORE			ILL AND COMPLETIC	on ith native material	GROUNDWA READINGS	ATER	DURI	ING D	RILL	LING	i A	FTER	DRILLI	NG (E	DATE)	TOTAL DE <b>1.7 ft</b>	PTH OF	BORING	
ELEVATION (ft)	DEPTH (ft)	Material Graphics		DESCRIPTION	Comolo Location	Sample Number	Blows per 6 in.	Blows per foot	Recovery (%)	RQD (%)	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Drilling Method	Casing Depth	Re	marks		
	1	- ALA	SILTY GRAVEL (GM	M); loose; brown; moist.											app met	per 1.7 feet o roximately 2 avolcanic ro meter	0% cobb		
632.00			Bottom of borehole a	at 1.7 ft bgs	!			<u> </u>				ļ		<u>                                      </u>		ential refusa	l at 1.7 f	eet	
630.00	3 4 5 6 7 8 9														und RO wea	e upper 1.7 fe lerlain by ME CK, greenisł athered, inter tured, hard	TAVOLO	CANIC	
628.00	6																		
626.00	7 8																		
624.00	10																		
622.00																			
620.00	13 14	1																	
618.00	15																		
616.00	17 18																		
614.00	19 20	-																	
9 3/2/12	21																		
612.00	22																		
610.00																			
S.G.	-25																		
			Blackburn Co	onsulting		F	REPOR BOR	ING	rle RE	со	RD						HOLE I	⊳ 2-105	
ANDAR			11521 Blocke Auburn, CA 9	er Drive, Suite 110			DIST. <b>03</b>		OUN ED			ROL 50			STMI .2/1.4		EA 03-10		
		ourn	Phone: (530)					orad	lo S	R 5	60 H	IOV I	anes	Ph	ase				
s con	ISU	ting	Fax: (530) 88	7-1495		E	BRIDGE	E NUI	MBE	R		epar oe F	ED BY			DATE 3-2-	·12	SHEET 1 of 1	ļ



	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS
624.68 NAVD 1929	03	ED .	50	0.60/1.35	242	245
SK, 78.24' LT, STATION NORTHING 2000992.20, 618.23 NAVD 1929 , 67.26' RT, STATION NORTHING 2001018.23,	PLA The St shall r	NS APPROV ate of Califor not be respon	nia or its offici sible for the ad	ers or agents	1739 1/31/13 RTIFIED NEFRING	
	249	CKBURN CO I BOATMAN T SACRAME		691 FILE No.	1072.8	
	3243	RAMOS C	ERING, INC. IRCLE CA 95827-2	2501		i
fication of soils was in acc	ordan	ce with AS	TM D 2488	-00 "Description of	nd	

Identification of Soils (Visual-Manual Procedure)" and 2012 Field classification of soils was in accordance with the Caltrans Soil & Rock Logging, Classification, and Presentation Manual 2010. See Log of Test Borings No. 2 and 3, "Soil Legend". 1999 boring logs converted from metric to english. 2. 1999 Rock classification according to Caltrans "Soil & Rock Logging Classification Manual (Field Guide)", August 1996, and Bureau of Reclamation, U.S. Department of the Interior, USBR-5000, "Procedure for Determining Unified Soil Classification", Earth Manual, Part II, Third Edition, 1990. 3. Standard Penetration tests were performed in accordance with ASTM D 1586-99 (1999) and 1586–08 (2012) using a hammer operated with cat—head, rope and pulley with a 30—inch drop (1999) and automated drop system (2012). Drill rods were 1 5/8-inch diameter "A"-rods; sampler was driven

4. "2.4 inch sampler": ID=2.4 inch, OD=2.9 inch. Driven in same manner as SPT ("1.4 inch") sampler. 5. Where indicated by an asterisk (*) the number of blows shown is for only that fraction of the initial 0.5 ft. "seating drive" interval penetrated.

6. If laboratory tests are not shown as being performed, the soil descriptions presented in the LOTB are based solely on the visual practices described in the before mentioned Manuals. 7. The length of each sampled interval is shown graphically on the boring log.

8. Consistency of soils shown in ( ) where estimated.

9. Groundwater surface (GWS) reflect the fluid level in the borings on the specified date. Groundwater surface is subject to seasonal fluctuations and may occur at higher or lower elevations depending on

 Electronic media for plan view provided by Quincy Engineering, "Foundation Plan" dated March 2012.
 Boring elevations are approximate and based on "Topography" received December 2004. 12. The "Log of Test Borings" drawing is included with plans in accordance with Section 2-1.06B of

	D.86' Lt, Sta. 58-	+49.05							
"\	W1" Line		L				630	)	
<b>±</b>	A-12-10 B" SILTY GRAVE METAVOLCAN intensely to froctured, dr	L (GM), ( IIC ROCK, moderate	grayish gree ly weathered	en to brow	'n,		<u>620</u> 610		
0206-	2012		-				010	v	
f at Ele	v. 610.7' encountered						600	( f e	
							590	U U U U U U U U U U U U U U U U U U U	
						į	580	Е <	
					•	Į	570	ц Ц Ц	
-						Ę	560	i	
		59-	+00		PI HO VE	ROFIL R. 1"=1 RT. 1"=1			
10. 22K	LATR	OBE	ROAL	) WB	OFF	RAN	ИР	UC	
	L	OG O	F TEST	BOR	RINGS	1 OF	4		
TRACT	N <b>O.:</b> 03-2E5101	DISREG/ EARLIEF	ARD PRINTS BI REVISION DA	EARING TES	REV 03/30/12	ASION DATES		SHEET 20	oғ 23

		GROUP SYMBO	LS AN		/ES						-979
Graphic	/ Symbol	Group Names	-	/ Symbol	-	roup Names		FIELD AND	_	-	-313
	GW	Well-graded GRAVEL Well-graded GRAVEL with SAND	Graphic	CL	Lean CLAY Lean CLAY with SA Lean CLAY with GR SANDY lean CLAY	ND	C CL CP	Consolidation Collapse Poter Compaction C	ntial (ASTM I	D 5333-03)	
	GP	Poorly graded GRAVEL Poorly graded GRAVEL with SAND			SANDY lean CLAY GRAVELLY lean Cl GRAVELLY lean Cl	LAY	CR CU	Corrosion, Sul CTM 417 - 06; Consolidated U	CTM 422 - 0	06)	
	GW-GM	Well-graded GRAVEL with SILT Well-graded GRAVEL with SILT and SAND Well-graded GRAVEL with CLAY (or SILTY CLAY)		CL-ML	SILTY CLAY SILTY CLAY with SA SILTY CLAY with G SANDY SILTY CLA SANDY SILTY CLA	RAVEL Y	DS EI M	Direct Shear ( <i>i</i> Expansion Inde Moisture Conte	ex (ASTM D	4829-03)	
	GW-GC	Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND) Poorly graded GRAVEL with SILT			GRAVELLY SILTY ( GRAVELLY SILTY ( SILT SILT with SAND	CLAY	OC P	Organic Conte Permeability (0	nt (ASTM D CTM 220 - 05	2974-07) 5)	
	GP-GM	Poorly graded GRAVEL with SILT and SAND Poorly graded GRAVEL with CLAY (or SILTY CLAY) Poorly graded GRAVEL with CLAY and SAND		ML	SILT with GRAVEL SANDY SILT SANDY SILT with G GRAVELLY SILT	GRAVEL	PA PI	Particle Size A Liquid Limit, P (AASHTO T 89	lastic Limit, F 9-02, AASHT	Plasticity Inde O T 90-00)	/
	GM	(or SILTY CLAY and SAND) SILTY GRAVEL SILTY GRAVEL with SAND			GRAVELLY SILT with ORGANIC lean CLA ORGANIC lean CLA ORGANIC lean CLA	AY AY with SAND	PL PM PP	Point Load Ind Pressure Mete Pocket Penetro	r	5731-05)	
	GC	CLAYEY GRAVEL CLAYEY GRAVEL with SAND		OL	SANDY ORGANIC SANDY ORGANIC GRAVELLY ORGAN	lean CLAY lean CLAY with GRAVEL	R SE SG	R-Value (CTM Sand Equivale Specific Gravit	nt (CTM 217	,	
	GC-GM	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL with SAND	$\sum$	OL	ORGANIC SILT ORGANIC SILT with ORGANIC SILT with SANDY ORGANIC	h GRAVEL	SL SW	Shrinkage Lim Swell Potentia	it (ASTM D 4	27-04)	
ه ه. . ه ه. 	sw	Well-graded SAND Well-graded SAND with GRAVEL			SANDY ORGANIC GRAVELLY ORGAN	SILT with GRAVEL		Pocket Torvan Unconfined Co Unconfined Co Unconsolidate	mpression - mpression -	Rock (ASTN	
	SP	Poorly graded SAND Poorly graded SAND with GRAVEL Well-graded SAND with SILT		сн	Fat CLAY with SAN Fat CLAY with GRA SANDY fat CLAY SANDY fat CLAY w	VEL	uw	(ASTM D 2850 Unit Weight (A	0-03) STM D 4767	² -04)	
	SW-SM	Well-graded SAND with SILT and GRAVEL Well-graded SAND with CLAY (or SILTY CLAY)			GRAVELLY fat CLA GRAVELLY fat CLA Elastic SILT Elastic SILT with SA	NY NY with SAND		Vane Shear (A			
	SP-SM	Well-graded SAND with CLAY and GRAVEL (or SiLTY CLAY and GRAVEL) Poorly graded SAND with SILT Poorly graded SAND with SILT and GRAVEL		мн	Elastic SILT with GF Elastic SILT with GF SANDY elastic SILT SANDY elastic SILT GRAVELLY elastic GRAVELLY elastic	RAVEL - - with GRAVEL SILT		SAMPLER	-	_	DLS
	SP-SC	Poorly graded SAND with CLAY (or SILTY CLAY) Poorly graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL) SILTY SAND		он	ORGANIC fat CLAY ORGANIC fat CLAY ORGANIC fat CLAY SANDY ORGANIC SANDY ORGANIC	∕ with SAND ∕ with GRAVEL		2.5" Split Sp	ooon Samp	ler	
	SM	SILTY SAND with GRAVEL CLAYEY SAND			GRAVELLY ORGAN GRAVELLY ORGAN ORGANIC elastic S ORGANIC elastic S	NIC fat CLAY with SAND		2" Split Spo	on Sample	r	
	SC SC-SM	CLAYEY SAND with GRAVEL SILTY, CLAYEY SAND		он	ORGANIC elastic S SANDY elastic ELA	ILT with GRAVEL STIC SILT elastic SILT with GRAVEL		Shelby Tub	e	Piston Sa	mpler
	РТ	SILTY, CLAYEY SAND with GRAVEL				NIC elastic SILT with SAND		NX Rock C	ore	HQ Rock	Core
		COBBLES COBBLES and BOULDERS BOULDERS	נד אד אין נד אד אר נד אר אר	ol/oh	SANDY ORGANIC SANDY ORGANIC GRAVELLY ORGAN GRAVELLY ORGAN	SOIL with GRAVEL		Bulk Sampl	e	Other (see	e remarks)
		DRILLING MET	HOD	SYMB	OLS			WATER		SYMBOL	S
R	Auger	Drilling Rotary Drilling		)ynamio r Hand	Cone Driven	Diamond Core	Ţ	First Water L Static Water Static Water	Level Read	ing (short-t	erm)
		Blackburn Consulting					BORING	G RECORI	DLEGEN	ND	
>>	ackburn 2007 2007 2007 2007 2007 2007 2007 200					COUNTY El Dorado PROJECT OR BRIDGE	5	UTE <b>0</b>		POSTMILE <b>0.6/1.4</b>	
	ultin					PREPARED BY			DATE 5-17-12		SHEET 1 of

	CO	NSISTENCY OF CO	HESIVE SOILS	i
Descriptor	Unconfined Compressive Strength (tsf)	Pocket Penetrometer (tsf)	Torvane (tsf)	Field Approximation
Very Soft	< 0.25	< 0.25	< 0.12	Easily penetrated several inches by fist
Soft	0.25 - 0.50	0.25 - 0.50	0.12 - 0.25	Easily penetrated several inches by thumb
Medium Stiff	0.50 - 1.0	0.50 - 1.0	0.25 - 0.50	Can be penetrated several inches by thumb with moderate effort
Stiff	1.0 - 2.0	1.0 - 2.0	0.50 - 1.0	Readily indented by thumb but penetrated only with great effort
Very Stiff	2.0 - 4.0	2.0 - 4.0	1.0 - 2.0	Readily indented by thumbnail
Hard	> 4.0	> 4.0	> 2.0	Indented by thumbnail with difficulty

APPARENT DENSITY OF COHESIONLESS SOILS							
Descriptor	SPT N ₆₀ - Value (blows / foot)						
Very Loose	0 - 4						
Loose	5 - 10						
Medium Dense	11 - 30						
Dense	31 - 50						
Very Dense	> 50						

	MOISTURE								
Descriptor	Criteria								
Dry	Absence of moisture, dusty, dry to the touch								
Moist	Damp but no visible water								
Wet	Visible free water, usually soil is below water table								

PERCENT OR PROPORTION OF SOILS						
Descriptor Criteria						
Trace	Particles are present but estimated to be less than 5%					
Few	5 to 10%					
Little	15 to 25%					
Some	30 to 45%					
Mostly	50 to 100%					

SOIL PARTICLE SIZE						
Descriptor		Size				
Boulder		> 12 inches				
Cobble		3 to 12 inches				
Gravel	Coarse	3/4 inch to 3 inches				
Graver	Fine	No. 4 Sieve to 3/4 inch				
	Coarse	No. 10 Sieve to No. 4 Sieve				
Sand	Medium	No. 40 Sieve to No. 10 Sieve				
	Fine	No. 200 Sieve to No. 40 Sieve				
Silt and Clay		Passing No. 200 Sieve				

	PLASTICITY OF FINE-GRAINED SOILS								
Descriptor	Descriptor Criteria								
Nonplastic A 1/8-inch thread cannot be rolled at any water content.									
Low The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.									
Medium	The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.								
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.								

	CEMENTATION						
Descriptor	Descriptor Criteria						
Weak	Crumbles or breaks with handling or little finger pressure.						
Moderate	Crumbles or breaks with considerable finger pressure.						
Strong	Will not crumble or break with finger pressure.						

	Blackburn Consulting	Consulting BORING RECORD LEGEN					
	11521 Blocker Drive, Suite 110	COUNTY El Dorado	ROUTE <b>50</b>		OSTMILE <b>0.6/1.4</b>		
blackburn	FIIUIIE. (330) 007-1494	PROJECT OR BRIDGE NAM	1E				
consulting	Fax: (530) 887-1495	PREPARED BY		DATE 5-17-12		SHEET 2 of 3	

ROCK GRAPHIC SYMBOLS	BEDDI	NG SPACING
	Descriptor	Thickness or Spacing
IGNEOUS ROCK	Massive	> 10 ft
_	Very thickly bedded	3 to 10 ft
SEDIMENTARY ROCK	Thickly bedded	1 to 3 ft
	Moderately bedded Thinly bedded	3-5/8 inches to 1 ft 1-1/4 to 3-5/8 inches
	Very thinly bedded	3/8 inch to 1-1/4 inches
	Laminated	< 3/8 inch

	WEATHERING DESCRIPTORS FOR INTACT ROCK										
	Diagnostic Features										
	Chemical Weathering-Discol	oration-Oxidation	Mechanical Weathering	Texture ar	nd Solutioning						
Descriptor	r Body of Rock Fracture Surfac		and Grain Boundary Conditions	Texture	Solutioning	General Characteristics					
Fresh	No discoloration, not oxidized	No discoloration or oxidation	No separation, intact (tight)	No change	No solutioning	Hammer rings when crystalline rocks are struck.					
Slightly Weathered	Discoloration or oxidation is limited to surface of, or short distance from, fractures; some feldspar crystals are dull	Minor to complete discoloration or oxidation of most surfaces	No visible separation, intact (tight)	Preserved	Minor leaching of some soluble minerals may be noted	Hammer rings when crystalline rocks are struck. Body of rock not weakened.					
Moderately Weathered	Discoloration or oxidation extends from fractures usually throughout; Fe-Mg minerals are "rusty": feldspar crystals are "cloudy"	All fracture surfaces are discolored or oxidized	Partial separation of boundaries visible	Generally preserved	Soluble minerals may be mostly leached	Hammer does not ring when rock is struck. Body of rock is slightly weakened.					
Intensely Weathered	Fe-Mg minerals are altered to clay to some extent; or	All fracture surfaces are discolored or oxidized; surfaces are friable	Partial separation, rock is friable; in semi-arid conditions, granitics are disaggregated	Altered by chemical disintegration such as via hydration or argillation	Leaching of soluble minerals may be complete	Dull sound when struck with hammer; usually can be broken with moderate to heavy manual pressure or by light hammer blow without reference to planes of weakness such as incipient or hairline fractures or veinlets. Rock is significantly weakened.					
	bsed Discolored of oxidized throughout, but resistant minerals such as quartz may be unaltered; all feldspars and Fe-Mg minerals are completely altered to clay		Complete separation of grain boundaries (disaggregated)	Resembles a soil; partial or complete remnant rock structure may be preserved; leaching of soluble minerals usually complete		Can be granulated by hand. Resistant minerals such as guartz may be present as "stringers" or "dikes".					

Note: Combination descriptors (such as "slightly weathered to fresh") are used where equal distribution of both weathering characteristics is present over significant intervals or where characteristics present are "in between" the diagnostic feature. However, combination descriptors should not be used where significant identifiable zones can be delineated. Only two adjacent descriptors shall be combined. "Very intensely weathered" is the combination descriptor for "decomposed to intensely weathered".

Criteria

Descriptor

Extremely Hard Very hard

RELATIVE STRENGTH OF INTACT ROCK							
Descriptor	Uniaxial Compressive Strength (psi)						
Extremely Strong	> 30,000						
Very Strong	14,500 - 30,000						
Strong	7,000 - 14,500						
Medium Strong	3,500 - 7,000						
Weak	700 - 3,500						
Very Weak	150 - 700						
Extremely Weak	< 150						

#### CORE RECOVERY CALCULATION (%)

 $\frac{\sum \text{ Length of the recovered core pieces (in.)}}{\text{Total length of core run (in.)}} \ge 100$ 

Description	Oritoria						
	FRACTURE DENSITY						
Very Soft	Specimen can be readily indented, grooved, or gouged with fingernail, or carved with pocket knife; breaks with light hand pressure						
Soft Specimen can be grooved or gouged with pocket knife or sharp pick with li pressure, breaks with light to moderate hand pressure							
Moderately Soft	Specimen can be grooved 1/6 in. with pocket knife or sharp pick with moderate or heavy pressure; breaks with light hammer blow or heavy hand pressure						
Moderately Hard Specimen can be scratched with pocket knife or sharp pick with light or moderate pressure; breaks with moderate hammer blows							
Hard	Specimen can be scratched with pocket knife or sharp pick with heavy pressure; heavy hammer blows required to break specimen						
	repeated heavy hammer blows						

**ROCK HARDNESS** 

Specimen cannot be scratched with pocket knife or sharp pick; can only be chipped with repeated heavy hammer blows

Specimen cannot be scratched with pocket knife or sharp pick; breaks with

# RQD CALCULATION (%)

 $\frac{\sum \text{ Length of intact core pieces > 4 in.}}{\text{Total length of core run (in.)}} \quad x \text{ 100}$ 

FRACTURE DENSITY						
Descriptor Criteria						
Unfractured No fractures						
Very Slightly Fractured Lengths greater 3 ft						
Slightly Fractured	Lengths from 1 to 3 ft, few lengths outside that range					
Moderately Fractured	Lengths mostly in range of 4 in. to 1 ft, with most lengths about 8 in.					
Intensely Fractured	Lengths average from 1 in. to 4 in. with scattered fragmented intervals with lengths less than 4 in.					
Very Intensely Fractured	Mostly chips and fragments with few scattered short core lengths					



Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 887-1494 Fax: (530) 887-1495

-										
	BORING RECORD LEGEND									
	COUNTY ROUTE POSTMILE									
	El Dorado 50 0.6/1.4									
	PROJECT OR BRIDGE NAME									
	PREPARED BY DATE SHEET									
	RCP		5-17-1	2	3 of 3					

# **APPENDIX B**

Laboratory Test Results



# Rock Core Compression Tests (ASTM D7012)

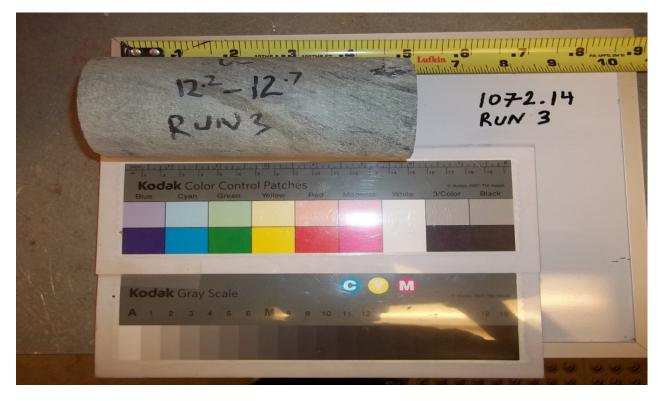
Auburn Office: 11521 Blocker Drive, Suite 110 • Auburn, CA 95603 (530) 887-1494 • Fax (530) 887-1495



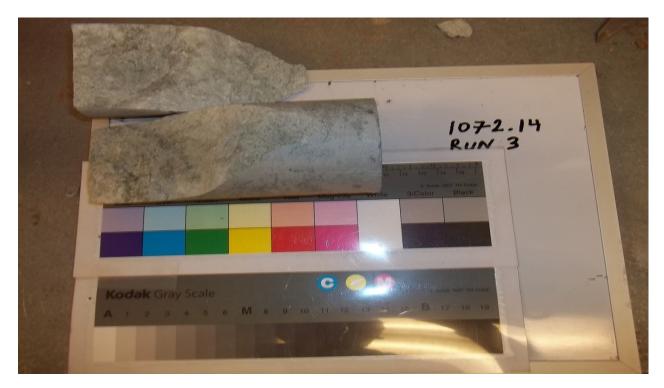
# Modesto Office: (209) 522-6273 West Sacramento Office: (916) 375-8706

# Rock Core Compression Test

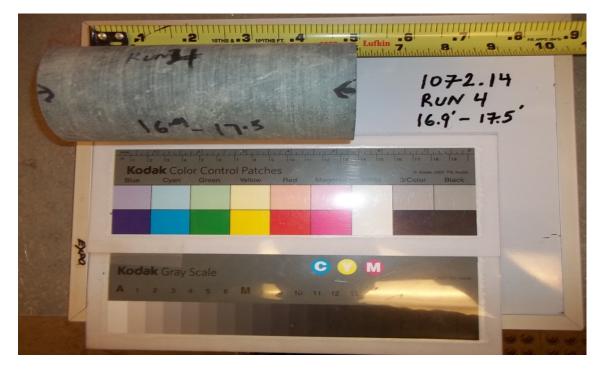
BCI File No.: 1072.14 Project Name: US 50 / Latrobe Road West Bound On - and off - Ramp


Specimen	Depth (ft)	FINAL TRIM LENGTH (in.)	Trim Length (in.)	ORIGINAL LENGTH (in.)	DIAMETER (in.)	AREA (in. ² )	TOTAL LOAD (lbs.)	COMP STRENGTH (psi)	L/D RATIO	CORR. FACTOR	CORR. COMP. STRENGT H (psi)	DRY CORE WEIGHT (grams)	WET CORE WEIGHT	UNIT WEIGHT (pcf)
RDC-12-119														
Run 3	12.2-12.7	5.82	5.90	20.00	2.391	4.49	2405	540	2.43	1	540	1010.1	1047.9	147.3
Run 4	16.9-17.5	5.87	5.90	16.50	2.391	4.49	20235	4,510	2.46	1	4510	1192.0	1194.2	172.3

Note: Sample for Run 3 broke on healed fracture


#### GEOTECHNICAL DESIGN/MATERIALS REPORT – ADDENDUM #1 US 50/Latrobe Road West Bound On- and Off-Ramps PM 0.02/1.4, 03-ED-50, EA 03-2E5101

Job File No. 1072.14 June 4, 2012


*PM 0.02/1.4, 03-ED-50, EA 03-2E5101 El Dorado County, California* 



Run 3 Before





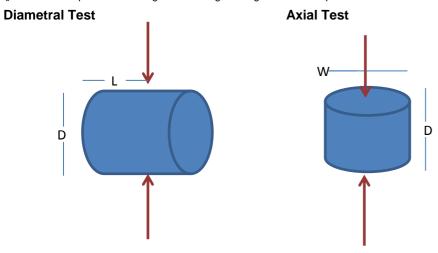


Run 4 Before



Run 4 After

Blackburn Consulting Auburn Office: 11521 Blocker Drive, Suite 110 Auburn, CA 95603 (530) 887-1494 Fax (530) 887-1495


#### Point Load Test Results ASTM D 5731 US 50/Latrobe Road West Bound On- and Off Ramps EA 03-2E5101

Boring	Run Number	Depth (ft)	D (in)	L (in) (W for axial tests)	L/D Ratio	Maximum Pressure (psi)	Load at Failure (lbf)	Size Correction Factor (F)	PLI (Point Load Index) (psi)	Size Corrected PLI (psi)	UCS Estimate (psi, K=24.5)	Notes
RDC-12-119	1	4.7-4.9	2.4	2.5	1.0	302	444	1.09	77	84	2064	break along healed fracture
	2	7.3-7.6	2.4	3.8	1.6	1709	2511	1.09	436	477	11678	
	2	8.1-8.4	2.4	3.0	1.3	2448	3597	1.09	624	683	16727	
	3	15.5-16	2.4	3.0	1.3	1186	1743	1.09	303	331	8104	break along healed fracture
	3*	15.5-15.65	1.8	2.4	0.7	209	307	0.95	57	54	1334	break along healed fracture
	4	16.6-16.85	2.4	3.0	1.3	1484	2181	1.09	379	414	10140	
	4	17.7-18.1	2.4	3.0	1.3	1323	1944	1.09	338	369	9040	break along healed fracture
	4	19.2-19.9	2.4	4.0	1.7	2585	3798	1.09	659	721	17664	
	4	19.9-20.7	2.4	5.0	2.1	2123	3120	1.09	542	592	14507	
	4*	20.15-20.3	2.0	2.4	0.8	1535	2256	1.01	369	372	9102	
	5	21.6-22	2.4	2.5	1.0	3017	4433	1.09	770	841	20615	
	5*	22.0-22.15	2.1	2.4	0.9	751	1104	1.03	172	177	4335	break along healed fracture
	5	22.3-22.8	2.4	3.0	1.3	2529	3716	1.09	645	705	17281	
	5*	23.7-23.85	2.3	2.4	1.0	1308	1922	1.08	269	290	7114	
	6	27-27.4	2.4	3.0	1.3	2808	4126	1.09	716	783	19187	
	6	27.4-27.8	2.4	4.8	2.0	2878	4229	1.09	734	803	19666	

#### Notes:

Diametral test performed unless denoted as axial tests by *.

Size corrected PLI is not equal to the uniaxial compressive strength. Uniaxial compressive strength can be estimated by  $s_c=KI_s$  where  $s_c=uniaxial$  compressive strength, K=index to strength conversion factor that is site-specific,  $I_s=uncorrected$  point load strength index. A general guideline for K per ASTM D5731 for 2.36" diameter core is 24.5.





567 West Shaw Avenue Suite B Fresno CA 93704 P 559.497.2880 F 559.497.2886 www.bskassociates.com

June 1, 2012

BSK G10-085-10F BSK SAMPLE ID: F12-218

Mr. Ken Colburn Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, California 95603

> SUBJECT: Laboratory Testing Results PO 10250 – US 50 WB onramp overhead sign CS61

Dear Mr. Colburn:

BSK Associates (BSK) has performed testing on one (1) soil sample received at our laboratory on May 17, 2012. The sample was identified as follows:

Run 1 (3.5'-4.5')

Testing was performed in accordance with Caltrans Test Methods and consisted of Minimum Resistivity and pH (Caltrans Test Method 643), Sulfate Content (Caltrans Test Method 417), and Chloride Content (Caltrans Test Method 422). The test reports are enclosed.

BSK appreciates the opportunity to be of service to Blackburn Consulting and looks forward to being of service to you in the future. Please call the undersigned with any questions you may have at (559) 497-2880.

Respectfully, BSK ASSOCIATES

Kenneth M. Frank, E.I.T. Staff Engineer

KMF/NMS/mlt

2NL

Nathan M. Shwiyhat, P.E. Project Engineer

Enclosures: Analytical Results (3 pages) Minimum Resistivity Results (1 page)

Distribution: Mr. Ken Colburn, Blackburn Consulting (1 original + eMail) BSK (1 original + cCopy)

@ BSK ASSOCIATES. All rights reserved. Reproduction of any part of this document without the written permission of BSK is prohibited.



# MINIMUM RESISTIVITY OF SOILS

1415 Tuolumne St. Fresno, CA 93706 Ph: (559) 497-2868 Fax: (559) 485-6140

# Caltrans Test Method 643

Project Name:	US 50 HOV WB Onra	mp Overhead Sign	Report Date: 5/24/2012
Project Number:	G10-085-10F	PO: 10250	Sample Date: 5/16/2012
Lab Tracking ID:	F12-218		Test Date: 5/18/2012
Sample Location:	Run 1 @ 3.5-4.5'		
Sample Description:	Silty Sand (SM), olive	green, fine to coarse grained, tra	ce of clay
Sampled By:	Client	-	Tested By: J. Frank

Soil temperature at minimum resistance = 23 °C

Total Moisture Added (ml)	Resistance Measured (ohms)	Resistivity (ohm-cm)
0	15,000	17813
10	5,400	6413
20	4,800	5700
25	5,000	5938
 Minimum Resistivity	5700	

**Remarks:** 



Lloyd Suehiro BSK Associates - Fresno 567 W Shaw, Suite B Fresno, CA 93704

Lab Sample ID:A2E1725-01Sample Date:05/16/2012 00:00Sample Type:Grab

**Certificate of Analysis** 

Report Issue Date: 05/24/2012 15:09 Received Date: 05/22/2012 Received Time: 12:22

#### Sampled by: Jason Frank Matrix: Solid

Sample Description: Run 1 3.5'-4.5'

#### **General Chemistry**

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
*Chloride, Cal Trans Extract	California Test 422	11	3.0	mg/kg	1	A205442	05/23/12	05/24/12	
*pH, Cal Trans Extract	California Test 643	8.4		pH Units	1	A205457	05/24/12	05/24/12	
*pH Temperature in °C		20.4							
*Sulfate as SO4, Cal Trans Extract	California Test 417	51	6.0	mg/kg	1	A205442	05/23/12	05/24/12	

A2E1725 FINAL 05242012 1509

www.bsklabs.com

1414 Stanislaus Street

Page 3 of 9



						•					
				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
Batch: A205442				Analyst:	AJT	Prepared	d: 05/23/2	012			
Blank (A205442-BLK1) Cali	iornia Test 422 - Qualit	y Control									
Chloride, Cal Trans Extract	ND	3.0	mg/kg							05/24/12	
Sulfate as SO4, Cal Trans Extract	ND	6.0	mg/kg							05/24/12	
Blank Spike (A205442-BS1)	California Test 422 - Q	uality Control									
Chloride, Cal Trans Extract	50	1.0	mg/kg	50		100	90-110			05/24/12	
Sulfate as SO4, Cal Trans Extract	50	2.0	mg/kg	50		100	90-110			05/24/12	
Blank Spike Dup (A205442-BS	D1) California Test	422 - Quality C	ontrol								
Chloride, Cal Trans Extract	50	1.0	mg/kg	50		100 -	90-110	0	10	05/24/12	
Sulfate as SO4, Cal Trans Extract	50	2.0	mg/kg	50		101	90-110	0	10	05/24/12	
Matrix Spike (A205442-MS1)	California Test 422 - (	Quality Contro	)l			Source	e: A2E172	25-01			
Chioride, Cal Trans Extract	360	6.0	mg/kg	300	11	115	80-120			05/24/12	
Sulfate as SO4, Cai Trans Extract	400	12	mg/kg	300	51	116	80-120			05/24/12	
Matrix Spike Dup (A205442-M	SD1) California Test	422 - Quality	Control			Source	e: A2E172	25-01	ja ja	a ha ha	-
Chloride, Cal Trans Extract	360	6.0	mg/kg	300	11	115	80-120	0	10	05/24/12	
Sullate as SO4, Cal Trans Extract	400	12	mg/kg	300	51	115	80-120	1	10	05/24/12	
Batch: A205457				Analyst:	RCN	Prepare	d: 05/24/2	2012			
Duplicate (A205457-DUP1)	California Test 643 - Qu	uality Control				Source	e: A2E157	79-01			
pH, Cal Trans Extract	7.5		pH Units		7.0			8	20	05/24/12	

General Chemistry Quality Control Report

A2E1725 FINAL 05242012 1509

1414 Stanislaus Street

Page 4 of 9



#### **Certificate of Analysis**

05/24/2012

#### Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.
- · Sample(s) received, prepared, and analyzed within the method specified criteria unless otherwise noted within this report.
- The results relate only to the samples analyzed in accordance with test(s) requested by the client on the Chain of Custody document. Any
  analytical quality control exceptions to method criteria that are to be considered when evaluating these results have been flagged and are
  defined in the data qualifiers section.
- All results are expressed on wet weight basis unless otherwise specified.
- All positive results for EPA Methods 504.1, 502.2, and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results
  are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method
  requirement has not been performed.
- Results contained in this analytical report must be reproduced in its entirety.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- BSK Analytical Laboratories certifies that the test results contained in this report meet all requirements of the NELAC Standards for applicable certified drinking water chemistry analyses unless qualified or noted in the Case Narrative.
- Analytical data contained in this report may be used for regulatory purposes to meet the requirements of the Federal or State drinking water, wastewater, and hazardous waste programs.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- * This is not a NELAP accredited analyte.
- Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values
  occurring before or after the total value is calculated, as well as rounding of the total value.
- (2) The digestion used to produce this result deviated from EPA 200.2 by excluding hydrochloric acid in order to produce acceptable recoveries for affected metals.
- (2C) Result reported from secondary analytical column.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.

#### **Certifications:**

State of California - CDPH - ELAP	1180
State of California - CDPH - NELAP	04227CA
State of Nevada - NDEP	CA000792009A
State of Hawaii - DOH	04227CA

#### **Definitions and Flags for Data Qualifiers**

mg/L: mg/Kg:	Milligrams/Liter (ppm) Milligrams/Kilogram (ppm)	M: RL:	Method Detection Limit Reporting Limit	MDA95: MPN:	Min. Detected Activity Most Probable Number
µg/L:	Micrograms/Liter (ppb)		:DL x Dilution	CFU:	Colony Forming Unit
µg/Kg:	Micrograms/Kilogram (ppb)	ND:	None Detected at RL	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	pCi/L:	Picocuries per Liter	Present:	1 or more CFU/100mLs
	, , ,	NR:	Non-Reportable	RL Mult:	RL Multiplier

 
 Fresno, CA 93706
 (559) 497-2888
 FAX (559) 485-6935

 An Employee-Owned Company | Analytical Testing | Construction Observation Environmental Engineering | Geotechnical Engineering | Materials Testing
 A2E1725 FINAL 05242012 1509

www.bsklabs.com

Page 5 of 9

# **APPENDIX C**

**Core Photos** 





Box 1





#### GEOTECHNICAL DESIGN/MATERIALS REPORT – ADDENDUM #1 US 50/Latrobe Road West Bound On- and Off-Ramps PM 0.02/1.4, 03-ED-50, EA 03-2E5101 El Dorado County, California

Job File No. 1072.14 June 4, 2012



Box 3



Box 4

# **APPENDIX D**

Response to Caltrans Comments



#### **Response to Caltrans Comments**

Caltrans Comment 1:

The BCI Geotechnical Design/Material Report dated March 30, 2012 (GDMR) does not reference the installation for the CIDH piles for Signs CS-60 and CS-61, particularly in Sections 2.2, 8.6 and 10.6.

BCI response: Addressed in Addendum #1, pages 2, 4 and 5

#### Caltrans Comment 2:

Based on provided test pit logs (0-12-105 and 0-12-110) and Boring Log R-99-B3, "hard" metasedimentary and metavolocanic rock was encountered at shallow depth in the vicinity of the proposed CIDH piles for OH signs CS-60 and CS-61. Hard rock excavation for CIDH installation was not addressed in Sections 8.6 and 10.6 of the GDMR.

BCI Response: Addressed in Addendum #1, pages 4 and 5

#### Caltrans Comment 3:

Boring R-99-B3 depicts groundwater near the ground surface and atop the soil/rock interface. Section 7.3.2.3 of the GDMR notes "shallow groundwater and seepage along the soil/rock interface..." should be expected. Section 10.3 of the GDMR indicates that perched groundwater may require the utilization of sump pumps to facilitate construction. It is not clear if this comment applies to CIDH pile construction and the requirement for "dry hole" construction per Special Provision 10-1.58. A comment in Section 10.6 o of the GDMR regarding the potential for CIDH concrete placement in a wet hole may be desired.

BCI Response: Addressed in Addendum #1, page 5

#### Caltrans Comment 4:

Section 8.1.2 of the GDMR indicates hard rock excavation methods may be required. If blasting is allowed on the project, then the project special provisions should include SSP 19-706 "Rock Excavation (Controlled Blasting)".

BCI Response: To be addressed by Quincy Engineering in Project Specifications

#### Caltrans Comment 5:

The Exhibit A of the project special provisions did not have an item code for "Rock Excavation" (190161), or if blasting is allowed, an item code for "Rock Excavation (Controlled Blasting)" (190160).

BCI Response: To be addressed by Quincy Engineering in Project Specifications