FINAL FOUNDATION REPORT

Silva Valley Eastbound Off-Ramp Undercrossing El Dorado County, California Bridge No. 25-0128S 03-ED-50

> PM R1.65 EA 03-1E2901

Prepared for:

Mark Thomas & Company, Inc.

Prepared by:

Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, CA 95603 (530) 887-1494

May 14, 2012

West Sacramento Office: 2491 Boatman Ave • West Sacramento, CA 95691 (916) 375-8706 • Fax: (916) 375-8709

Main Office: (530) 887-1494 11521 Blocker Drive, Suite 110 • Auburn, CA 95603 Modesto: (209) 522-6273

Geotechnical

Construction Services

Forensics

File No. 556.2 May 14, 2012

Ms. Julie Passalacqua, P.E. Mark Thomas & Co., Inc. 7300 Folsom Blvd., Suite 203 Sacramento, California 95826

Subject: **FINAL FOUNDATION REPORT** Silva Valley Eastbound Off-Ramp UC Bridge No. 25-0128S 03-ED-50; PM R1.65; EA 03-1E2901

Dear Ms. Passalacqua,

In accordance with our April 7, 2010 agreement, Blackburn Consulting (BCI) prepared this Final Foundation Report for the Silva Valley Eastbound Off-Ramp UC planned for the US50 / Silva Valley Parkway Interchange project.

This report contains our subsurface findings, conclusions and recommendations for final foundation design.

Please call if you have questions or require additional information.

BLACKBURN CONSULTING

W. Eric Nichols, P.G., C.E.G. Senior Project Manager

No. 38788 Exp. 3-31-1 Rick Sowers, P.E., C.E.G Engineer, Principal

Distribution: Client (7)

FINAL FOUNDATION REPORT

Silva Valley Eastbound Off-Ramp UC Bridge No. 25-0128S 03-ED-50; PM R1.65; EA 03-1E2901

TABLE OF CONTENTS

1	INTRO	DUCTION1
		rpose
	1.2 Sc	ope of Services1
2		ECT DESCRIPTION
		oject Location and Site Description
	2.2 Pr	oject Description2
3	DOCU	MENT REVIEW
4	SUBSU	JRFACE INVESTIGATION
5	LABO	RATORY TESTING4
6	SITE (GEOLOGY
-		gional Geology4
	6.2 Si	te Geology and Faulting4
7	SUBSU	JRFACE CONDITIONS
		bsurface Soil and Rock Conditions
	7.1.1	Caltrans (1963)5
	7.1.2	BCI (2007)
	7.1.3	BCI (2010)
	7.2 Gr 7.2.1	Coltering (1062)
	7.2.1	Caltrans (1963)
	7.2.2	BCI (2010)
8	SCOU	R EVALUATION7
9		OSION EVALUATION
1(IIC RECOMMENDATIONS
		ult Rupture
		quefaction Evaluation
		ismic Settlement
		ismic Slope Instability
11		ILT DATA
12		DATION RECOMMENDATIONS
14		allow Foundations
	1.1.1	Spread Footing Data Table
	12.1.1	Slope Stability
	12.1.2	Lateral Resistance
	12.1.3	Settlement14

FINAL FOUNDATION REPORT

Silva Valley Eastbound Off-Ramp UC Bridge No. 25-0128S 03-ED-50; PM R1.65; EA 03-1E2901

TABLE OF CONTENTS (Continued)

12.2 Approach/Abutment Backfill Earthwork	14
12.2.1 Fill Material	14
12.2.2 Expansive Material	15
12.2.3 Geometry and Stability	15
12.2.4 Site Preparation	15
12.2.5 Settlement	15
12.2.6 Lateral Earth Pressures	15
13 CONSTRUCTION CONSIDERATIONS	16
13.1 Cuts and Excavations	16
13.2 Embankments	17
13.3 Spread Footings	17
13.4 Dewatering	17
13.5 Naturally Occurring Asbestos	17
13.6 Storm Water Quality	18
14 RISK MANAGEMENT	18
15 LIMITATIONS	18

APPENDIX A	Figure 1: Vicinity Map Figure 2: Regional Geologic Map Figure 3: Seismic Hazard Map Figure 4: ARS Curve
APPENDIX B	Log of Test Borings (7 sheets)
APPENDIX C	Laboratory Test Results Silva Valley Westbound On-Ramp UC Clarksville UC (Widen)
APPENDIX D	Design Calculations Allowable Bearing Capacity and Settlement Elastic Constants of Various Soils Slope Stability Output Graphs Lateral Earth Pressure
APPENDIX E	Draft Report Comment and Response – Caltrans OGDN and OSFP

1 INTRODUCTION

1.1 Purpose

Blackburn Consulting (BCI) prepared this Final Foundation Report for the new Silva Valley Eastbound Off-Ramp Undercrossing (UC) planned for the US 50/Silva Valley Parkway Interchange project in El Dorado Hills, El Dorado County, California.

The purpose of this report is to document subsurface geotechnical conditions, provide analyses of the subsurface conditions, and to recommend geotechnical design and construction criteria for the proposed bridge. Do not use or rely upon this report for different locations or improvements without the written consent of BCI.

1.2 Scope of Services

To prepare this report, BCI:

- Reviewed preliminary bridge design plans provided by Mark Thomas and Company, Inc. (MTCo)
- Discussed the project design needs with MTCo
- Reviewed geologic and seismic maps pertaining to the site
- Reviewed data for the recently-constructed US 50 bridge widening at Clarksville Undercrossing
- Conducted geologic site reconnaissance
- Prepared a Preliminary Foundation Report dated August 26, 2010 and a Draft Foundation Report dated November 8, 2010
- Drilled and sampled one boring to a maximum depth of 29 feet below existing grade at Abutment 2 to supplement the nearby data from the US 50 Undercrossing
- Performed laboratory testing on soil and rock samples retrieved from the borings
- Performed engineering and seismic analysis to provide recommendations for structure foundations and approach
- Incorporated our responses to Caltrans review comments to the Draft Foundation Report (summarized in Appendix E).

This Foundation Report supersedes the referenced Preliminary and Draft Foundation Reports prepared by BCI.

2 PROJECT DESCRIPTION

2.1 **Project Location and Site Description**

The project is located in El Dorado County, California, along US 50 at Post Mile R1.65, approximately 100 feet south (measured along "C1" Line) of the existing Clarksville Undercrossing (UC, at the existing Silva Valley Parkway). Figure 1 (Vicinity Map) in Appendix A shows the approximate project location.

The existing Silva Valley Parkway is a two-lane (north/south) road that crosses under US 50, with no freeway access. The road is established in a "through-cut" section about 5 to 6 feet below the original ground surface. US 50 crosses over the road and is built upon 13 to 15 feet of embankment fill at the bridge abutments. The embankment end-slopes are unpaved at about $1\frac{1}{2}$:1 (horizontal to vertical) and side-slopes are at 2:1.

The original US 50 bridges at Silva Valley Parkway (Clarksville UC, Bridge No. 25-0072 R/L) consist of two parallel bridges constructed in 1965. Each bridge is a 37-foot, 8-inch-wide by 110-foot-long, three-span structure. The substructure of each original bridge consists of open-style abutments supported on H-piles and two-column bents supported on spread footings. The original bridges were widened in 2010 with an infill at the median. For the infill project, the original foundation system was matched with H-Piles at the abutments and shallow spread footings at the bents.

The closest existing bridge structure is the Clarksville UC at Silva Valley Parkway. The abutment areas for the Eastbound UC are located in areas with undisturbed native ground. Vegetation consists primarily of moderately dense grasses and thistle. A buried electrical line is located in this area.

2.2 **Project Description**

The project will consist of a new undercrossing structure, Silva Valley Eastbound Off-Ramp UC. The structure will be a single span, cast-in-place concrete box girder bridge 127.5 feet long by about 38.9 feet wide. Abutment 1 will be located about 80 feet south of the existing US 50 undercrossing; Abutment 2 about 125 feet south. The new deck grade will be super elevated and will ascend from elev. 699.74 feet at Abutment 1 (Begin Bridge, "E1" Sta. 97+49.50) to elev. 704.34 feet at Abutment 2 (End Bridge, "E1" Sta. 98+77.00).

The substructure will consist of short-seat abutments supported on spread footings established in approach fill. Uniform base of spread footing foundations are planned at elevation 685.5 feet at Abutment 1 and elevation 688.0 feet at Abutment 2.

The new approach embankments will be as much as 28 feet high on the west (Abutment 1) and 30 feet high on the east (Abutment 2) with 2:1 (horizontal:vertical distance) side-slopes and 1.5:1 end-slopes. The embankments will be constructed from material derived from cuts elsewhere within the project interval and/or other unknown sources.

Benchmark datum used for this project (per MTCo) is National Geodetic Vertical Datum 1929 based on HPGN D CA 03 DL having an elevation of 693.55 feet and USGS BM T 127 (PID JS0692) having an elevation of 673.08 feet.

3 DOCUMENT REVIEW

BCI reviewed the following structure/site information for this project:

- Caltrans, Foundation Study, Clarksville Undercrossing III-ED-11-A, Br. #25-72 R&L, May 6, 1963.
- Caltrans, As-Built LOTB, Clarksville Undercrossing, Sheets 9 of 9, As-Built stamp undated, plans dated January 6, 1964.
- Caltrans, Memorandum, Foundation Report for Clarksville Undercrossing, August 3, 1965.
- Blackburn Consulting, Foundation Report for Clarksville UC (Widen), Bridge No. 25-0072L/R, EA 03-3A7111, El Dorado County, California, 2008.

4 SUBSURFACE EXPLORATION

To supplement the existing nearby boring data, further characterize the subsurface conditions and obtain samples for laboratory testing, BCI retained PC Exploration to drill and sample one exploratory boring (R-10-004) near the proposed Abutment 2 location. PC Exploration used a CME 75 truck-mounted rig to drill the boring on July 9, 2010 to a maximum depth of 29.0 feet below the ground surface (bgs). PC Exploration used hollow-stem auger to relatively competent bedrock, and then switched to HQ wireline diamond core equipment to complete the boring.

PC Exploration obtained relatively undisturbed samples using both Modified California Samplers and Standard Penetration Test samplers (1.4-inch I.D.). The samplers were driven into the ground with the force of a 140-pound hammer falling 30 inches using a hammer operated with an automated drop system. PC Exploration obtained rock cores by diamond-core barrel.

BCI's geologist logged the borings consistent with the Unified Soil Classification System (USCS), and noted the degree of weathering, fracture density, hardness percent recovery and Rock Quality Designation (RQD) for the recovered rock cores.

BCI retained soil and rock samples recovered with the drive sampler in moisture-proof containers for laboratory testing and reference. Rock cores were retained in core boxes for reference. BCI also made groundwater observations in the borings during and at completion of drilling operations. At the completion of drilling, the boring was backfilled with cement-grout.

Appendix B contains the Log of Test Borings (LOTB) drawings for this project which provide more specific soil and rock descriptions and an explanation of descriptive terms used to log the soil and rock.

5 LABORATORY TESTING

BCI performed Moisture Content-Dry Density and Corrosivity (pH, Minimum Resistivity, Sulfates, and Chlorides) tests in the laboratory on some of the samples obtained from the exploratory boring.

We present the laboratory test results in Appendix C.

6 SITE GEOLOGY

6.1 Regional Geology

The site is located within the foothills of the Sierra Nevada Geomorphic Province of California. The Sierra Nevada has a general northwest topographic/structural trend and is approximately 430 miles long and 40 to 80 miles wide. The mountain ranges of the Sierra Nevada began to develop roughly 120 to 130 million years ago when sediments as thick as 30,000 feet along with volcanic rocks buckled and warped resulting in a series of low mountain ranges. The roots of these mountain ranges were intruded by granitic rock.

The Sierra Nevada was tilted upward (down to the west) along faulting at the eastern edge. In the higher elevations, much of the younger sedimentary material and older metamorphic rock is eroded and now exposes the underlying granitic rock. Older rocks that remain are metamorphic and are exposed in the foothills of the Sierra Nevada.

Most of El Dorado County is underlain by Mesozoic-age metavolcanic and metasedimentary rocks. The metamorphic rock structure is dominated by northwest trending foliation and northwest trending faults and fault zones that mark the boundaries of major rock types.

6.2 Site Geology and Faulting

Published geologic mapping by Wagner¹ and Busch² shows Jurassic-age metavolcanic rock at the project site. Our site review and borings confirm the presence of shallow, metavolcanic rock. We show local site geology on Figure 2 (Geologic Map) in Appendix A.

Rock structure at the UC location is expected to be similar to the surrounding area with predominant foliation having a strike of north, 35° to 45° west, and a steep dip of 70°-90° to the north.

We did not observe indications of slope instability on the natural slopes in the area. We did not observe groundwater seepage in the UC area.

¹ Wagner, D.L. et al, "Geologic Map of the Sacramento Quadrangle, California", California Geological Survey, Map No. 1A, 1981, revised 1987.

² Busch, "Generalized Geologic Map of El Dorado County, California", June 2001, California Geological Survey, OFR 2000-03.

The West Bear Mountains Fault is located about 3,100 feet west of the site (near Latrobe Road) with a short splay mapped to the east approximately 1,200 feet west of the site. The East Bear Mountains Fault (or Rescue section) is located approximately 7 miles east of the site. Faults are not mapped through or adjacent to the UC site and we observed no indication of active faulting in the area.

We did not observe significant occurrence of ultramafic rock where naturally occurring asbestos minerals (NOA) are likely to occur. Published mapping and site review does not indicate that the project is within an ultramafic rock area; however, ultramafic rock and faulting are mapped nearby and naturally occurring asbestos minerals could potentially occur in the area. Geologic mapping by Churchill³ shows an "area more likely to contain naturally occurring asbestos" about one mile north of the Latrobe Road Undercrossing and east of Bass Lake Road. The mapping shows the site to be within an area "that probably does not contain asbestos."

Mapping by Bruyn⁴ shows the bridge site on the eastern border of a "Quarter Mile Buffer for More Likely to Contain Asbestos or Fault Line." Churchill discusses the possibility of serpentine occurring in faults or within fault zones, which may contain chrysotile or tremolite/actinolite asbestos.

7 SUBSURFACE CONDITIONS

7.1 Subsurface Soil and Rock Conditions

7.1.1 Caltrans (1963)

Subsurface exploration performed by the State Division of Highways (Caltrans) in April 1963 for the Clarksville UC consisted of four, 1-inch diameter soil tube borings. The foundation study and as-built Log of Test Borings (LOTB) drawing show subsurface materials encountered from original ground surface generally consist of 4 to 9 feet of stiff clay and slightly compact silty fine sand, underlain by sandstone, shale and schist. The foundation report states, "Approximately 17 feet of road embankment overlies the sand and clay at the right structure site." We include the as-built LOTB drawing in Appendix B.

7.1.2 BCI (2007)

BCI completed a total of five test borings in June/July 2007 for the Clarksville UC (Widen) project. In the existing UC abutment areas, subsurface materials generally consist of about 19 feet of roadway/embankment fill and native overburden materials comprised of medium dense and dense clayey gravel and silty sandy gravel (with local cobbles and boulders), and stiff to hard lean clay with varying amounts of sand and gravel. These materials are underlain by variably weathered and fractured metamorphic rock, consistent with published mapping. We include our LOTB drawings for the Clarksville UC (Widen) project in Appendix B.

³ Churchill, et al., 2000, "Areas More Likely to Contain Natural Occurrences of Asbestos in Western El Dorado County, California", California Geological Survey, OFR 2000-02

⁴ Bruyn, 2005, "Asbestos Review Areas, Western Slope, County of El Dorado, State of California", El Dorado County

7.1.3 BCI (2010)

In Boring R-10-004 completed for this project element, BCI encountered metavolcanic rock at a depth of 3 feet. The rock is consistent with published mapping and previous site exploration. The upper portion of the rock between a depth of 3 to 12 feet is decomposed and very intensely fractured (effectively soil-like described as dense clayey sand). This portion of the rock was drillable using 6-inch diameter hollow-stem auger.

Below 12 feet to the maximum depth explored (29.0 feet) the rock is less weathered and required diamond coring for drill advancement. We generally describe rock within this interval as intensely to moderately weathered (locally fresh), intensely to moderately fractured, and hard to very hard (locally moderately hard). The average core recovery was 70% and the Rock Quality Designation RQD⁵ ranged from 0 to 52%.

The metavolcanic rock is overlain by 3 feet of residual soil comprised of stiff to hard clay.

Refer to the LOTB and As-Built LOTB in Appendix B for more specific soil/rock descriptions, sampling methods, laboratory test results, and blow count data. We will include the required LOTB Sheet Checklist with the final report.

7.2 Groundwater

7.2.1 Caltrans (1963)

The Caltrans foundation study and as-built LOTB for the Clarksville UC indicate that static ground water levels were measured at ground surface in one boring and a depth of about 2 feet in two of the borings completed in April 1963. The foundation study states, "This water is due to artesian flow from the underlying bedrock."

The as-built LOTB identifies measured groundwater surface as follows:

Boring	Ground Surface Elevation (ft)	Measured Ground Water Elevation (ft)
B2	686.6	684.5
В3	681.5	"Water flowing from B-3 at rate of ¹ / ₂ gal per minute."
B4	676.5	676.5

Table 1 – Groundwater (1963 Caltrans Exploration)

Note: Elevations shown are referenced to datum used in 1963.

 $^{^{5}}$ RQD = Rock Quality Designation, expressed as the ratio of the total length of recovered rock core in pieces longer than 4-inches to the total length of core run)

The 1965 Foundation Report states, "Ground water was encountered at approximately 6' above the bottom of footing elevations. The footing excavations were dewatered by pumping for cleanup of the bottom of footings, forming and placing concrete."

7.2.2 BCI (2007)

During our June/July 2007 subsurface exploration for the Clarksville Undercrossing (Widen), BCI encountered groundwater at elev. 659.7, about 39 feet below ground surface in Boring R-07-B2. We did not encounter groundwater within the augered intervals in the other borings, and did not make groundwater measurements below the augered intervals due to the presence of residual drill fluid. None of the borings completed for the 2007 study exhibited artesian flow conditions.

7.2.3 BCI (2010)

We did not encounter free groundwater to elevation 660 feet within the augered portion of Boring R-10-004 drilled in July 2010. We did not make groundwater measurements below the augered interval due to the presence of residual drill fluid.

In general, we expect that shallow groundwater and seepage can occur near the soil/rock interface (depths of approximately 3 to 9 feet below existing, natural grade), particularly during the winter months or extended periods of rainfall. Locally, seepage can also occur along zones of fractured or less weathered rock and daylight at the ground surface or within excavations.

8 SCOUR EVALUATION

The site is not located adjacent to any waterways; therefore, scour is not a consideration for this project.

9 CORROSION EVALUATION

BCI evaluated one sample obtained during the 2010 site investigation for soil corrosivity. Table 2 presents the corrosivity test results.

Boring/Sample	Depth (ft)	Elevation (ft, msl)	Minimum Reistivity (Ohm-cm)	рН	Chloride Content (ppm)	Sulfate Content (ppm)
R-10-004 / 2	5.5	666.5	1420	7.10	17.0	67.5

Table 2 – S	Soil Corr	osion Test	Summary

Note: Caltrans considers a site to be corrosive to foundation elements if one or more of the following conditions exist: Chloride concentration is greater than or equal to 500 ppm, sulfate concentration is greater than or equal to 2000 ppm, or the pH is 5.5 or less. (Caltrans, "Corrosion Guidelines", version 1.0, September 2003) Laboratory test results indicate a "non-corrosive" soils environment as defined by the September 2003 Caltrans "Corrosion Guidelines" publication. Laboratory tests results on two samples obtained during our 2007 site exploration for the Clarksville Undercrossing (Widen) project were also "non-corrosive." These laboratory test results are consistent with our previous study completed in 2008. Appendix C contains the laboratory test results for the 2010 study.

10 SEISMIC RECOMMENDATIONS

10.1 Fault Rupture

The site does not lie within or adjacent to an Alquist–Priolo Earthquake Fault Zone for fault rupture hazard (Bryant and Hart, 2007)⁶, and no known active faults are mapped with the project area. Busch (2001) shows the main trace of the West Bear Mountains Fault crossing US 50 approximately 3,100 feet west of the bridge sites and a north-south trending splay associated with this fault crossing US 50 approximately 1,200 feet to the west. Jennings (1994)⁷ shows the West Bear Mountains Fault as Pre-Quaternary in age. The Caltrans Deterministic PGA Map (September 2007) does not consider this fault as an active seismic source and shows no active faults in the project area. The closest fault considered in ground motion analysis is the East Bear Mountains Fault (or Rescue section) located approximately 7 miles east of the bridge sites.

We consider the potential for fault rupture at the site to be low.

10.2 Ground Motion

BCI used the Caltrans ARS Online (web-based tool) to calculate both deterministic and probabilistic acceleration response spectra for the site based on criteria provided in Appendix B of Caltrans Seismic Design Criteria (Revision Date: 9/11/09).

The deterministic spectrum is determined as the average of median response spectra calculated using ground motion prediction equations developed under the "Next Generation Attenuation" (NGA) project. These equations are applied to all faults considered to be active in the last 750,000 years (late-Quaternary age) that are capable of producing a moment magnitude earthquake of 6.0 or greater. Caltrans procedures also require a minimum deterministic response spectrum that assumes a Maximum Moment Magnitude (MMax) of 6.5, vertical strike-slip event occurring at a distance of 7.5 miles.

Based on Caltrans ARS Online (V1.0.4) and other mapping, the closest recognized Late Quaternary or younger fault is the Bear Mountains Fault Zone (Rescue Fault section) located ± 7 miles east of the site. Figure 3, Seismic Hazard Map, in Appendix A shows the approximate fault locations. Caltrans assigns the Bear Mountains Fault Zone (Rescue Fault section) the following parameters shown in Table 3.

⁶ Fault Rupture Hazard Zones in California, Special Publication 42, Interim Revision; California Geological Survey ⁷ Fault Activity Map of California and Adjacent Areas, Geologic Map No. 6, California Division of Mines and Geology

Fault Parameters	Likely Fault
Fault Identification Number (FID)	83
Maximum Moment Magnitude (MMax)	6.5
Site-to-Fault (R _{RUP}) Distance (km/mi)	12.86 / 8.0
Style of Faulting	Normal
Fault Dip (degrees)	90
Dip Direction	Vertical

Table 3: Fault Data

The probabilistic spectrum is obtained from the USGS (2008) National Hazard Map for 5% probability of exceedance in 50 years. Caltrans design spectrum is based on the larger of the deterministic and probabilistic spectral values. Both the deterministic and probabilistic spectra account for soil effects through incorporation of the parameter Vs30, the average shear wave velocity in the upper 30 meters of the soil profile. For this site/project, we used a Site Class C with average Vs30 equal to 560 meters per second (approximately 1,800 feet per second) based on consideration of footings established in approach fill and the mapped ground conditions (underlain by metamorphic rock).

We recommend the design spectrum based on the upper envelope spectral values of the combined minimum deterministic and probabilistic response spectra across the period spectrum from 0 to 5 seconds. BCI assigns the site a MMax of 6.5 with a Peak Ground Acceleration (PGA) of 0.21g. We present data points for site spectra in Table 4 and graphed site spectra on Figure 4.

Period SA Period SA Period								
Perioa		Period	SA	Period	SA	Perioa	SA	
0	0.210	0.085	0.386	0.35	0.400	1.4	0.138	
0.01	0.210	0.09	0.399	0.36	0.394	1.5	0.131	
0.02	0.214	0.095	0.413	0.38	0.381	1.6	0.124	
0.022	0.217	0.1	0.425	0.4	0.369	1.7	0.118	
0.025	0.221	0.11	0.444	0.42	0.355	1.8	0.113	
0.029	0.227	0.12	0.461	0.44	0.341	1.9	0.108	
0.03	0.228	0.13	0.476	0.45	0.335	2	0.104	
0.032	0.233	0.133	0.480	0.46	0.329	2.2	0.093	
0.035	0.240	0.14	0.488	0.48	0.317	2.4	0.084	
0.036	0.243	0.15	0.499	0.5	0.306	2.5	0.080	
0.04	0.252	0.16	0.502	0.55	0.278	2.6	0.076	
0.042	0.257	0.17	0.503	0.6	0.254	2.8	0.070	
0.044	0.262	0.18	0.504	0.65	0.233	3	0.064	
0.045	0.265	0.19	0.505	0.667	0.227	3.2	0.059	
0.046	0.267	0.2	0.504	0.7	0.216	3.4	0.055	
0.048	0.272	0.22	0.490	0.75	0.203	3.5	0.053	
0.05	0.277	0.24	0.477	0.8	0.197	3.6	0.051	
0.055	0.294	0.25	0.470	0.85	0.193	3.8	0.047	
0.06	0.310	0.26	0.463	0.9	0.188	4	0.044	
0.065	0.326	0.28	0.449	0.95	0.185	4.2	0.042	
0.067	0.332	0.29	0.442	1	0.181	4.4	0.040	
0.07	0.342	0.3	0.436	1.1	0.168	4.6	0.039	
0.075	0.357	0.32	0.421	1.2	0.156	4.8	0.037	
0.08	0.371	0.34	0.407	1.3	0.147	5	0.036	

Table 4 - Caltrans ARS Online Envelope* Spectrum Data

* Envelope data for this site is a combination of the Minimum Deterministic Spectra and Probabilistic Spectra

10.3 Liquefaction Evaluation

Liquefaction can occur when saturated, loose to medium dense, granular soils (generally within 50 feet of the surface), or specifically defined cohesive soils, are subjected to ground shaking. Rock is present at shallow depths throughout the project area; therefore, we consider the potential for liquefaction of soils to be nonexistent at the UC.

10.4 Seismic Settlement

During a seismic event, ground shaking can cause densification of granular soil above the water table that can result in settlement of the ground surface. Rock is present at shallow depths throughout the project area; therefore, the potential for significant seismic settlement is low.

10.5 Seismic Slope Instability

Due to the presence of shallow rock and favorable rock structure, we consider the potential for seismic slope instability in the form of landslides and mudslides at this site to be very low. Similarly, we consider the potential for seismically induced failures or rockfall on engineered fill slopes constructed at 1.5:1(horizontal: vertical) or flatter to be very low. We present further slope stability evaluation below in the Foundation Recommendations.

11 AS-BUILT DATA

A Caltrans April 5, 2000 Memorandum presents a summary of the existing Clarksville Road UC, Bridge No. 25-0072 L/R foundations. In general, the existing left and right bridges, constructed in 1965, consist of 3-span structures supported on a combination of spread footings and pile foundations. H-piles were used at the abutments and designed for a design load of 45 tons when driven to rock. Shallow spread footings were used at the bents and designed for an allowable bearing capacity of 5 tons per square foot (tsf). At the abutments, embankment fill was predrilled to elev. 680.0 and piles then driven using a Delmag D12 Diesel hammer. Rocks encountered during pre-drilling through the existing highway embankment slowed the drilling operations. At the left footing of Bent 3 (right bridge), excavation was difficult and blasting was required to achieve the planned footing level.

BCI (2008) provided foundation recommendations for the bridge widening (to the median) at the Clarksville UC. The existing foundation system was matched with H-Piles at the abutments and shallow spread footings at the bents. H-piles were designed for a nominal resistance of 170 kips when driven to rock. Shallow spread footings on rock were designed using a Net Permissible Contact Stress of 23.0 to 31.5 kips per square foot.

12 FOUNDATION RECOMMENDATIONS

The new abutments for the Silva Valley Eastbound Off-Ramp UC will be founded on shallow spread footings established within new embankment.

Cast in Drilled Hole (CIDH) pile foundations or large diameter drilled-shafts were considered; however, casing would be required in the fill section and difficult drilling is expected due to both the hardness of the underlying rock and the frequency of fractures. Driven concrete piles are not an appropriate foundation alternative. Such piles would experience very hard driving within rock at shallow depths (likely resulting in damage to the pile) and likely would not achieve adequate penetration for stability. H-piles, similar to the nearby widened structure, are considered feasible. However, such piles would also experience very hard driving in rock, be essentially point bearing, and have very limited lateral capacity. MTCo provided the following foundation design information in Tables 5 and 6.

Support No.	Design Method	Finish Grade Elev.	- (11)		Permissible Settlement under Service Load (in)	
190.	Method	(ft)	(ft)	В	L	*
Abut 1	WSD	689.5	685.5	10.0	44.0	2.0
Abut 2	WSD	693.5	688.0	10.0	47.2	2.0

 Table 5 - Foundation Data

*Based on CALTRANS' current practice, the total permissible settlement for a shallow footing is one inch for multispan structures with continuous spans or multi-column bents, one inch for single span structures with diaphragm abutments, and two inches for single span structures with seat abutments. Different permissible settlement under service loads may be allowed if a structural analysis verifies that required level of serviceability is met.

	Table 0 - EKFD Service Emilt State 1									
			Total Lo	Permanent Load *						
Support No.	Vertical Effective Load Dimensions (ft)		Horizontal Load in Longitudinal Direction	Vertical Load	Effective Dimensions (ft)					
	(kip)	Ũ		(kip)	В'	L'				
Abut 1	1810	10.0	44.0	290	1550	10.0	44.0			
Abut 2	1900	10.0	47.2	330	1630	10.0	47.2			

Table 6 - LRFD Service Limit State I

Abut 2190010.047.2330163010.047.2* See table 3.4.1-2 in the AASHTO LRFD Bridge Design Specifications for components of permanent load. Total
and Permanent Loads are NET for Bents and GROSS for Abutments.163010.047.2

12.1 Shallow Foundations

1.1.1 Spread Footing Data Table

Based on footing foundation design data provided by MTCo and our geotechnical analysis, we provide foundation design recommendations in Table 7. A discussion of our analyses follows.

		~			WSD (LRFD Service-I Limit State Load Combination)		LRFD		
Support	Footin (f	ng Size (t)	Bottom of	Minimum Footing			Service	$\begin{array}{l} Strength \\ \phi_b = 0.45 \end{array}$	Extreme Event $\phi_b = 1.0$
Location	В	L	Footing Elevation (ft)	Embedment Depth (ft)	Permissible Gross Contact Stress (ksf)	Allowable Gross Bearing Capacity (ksf)	Permissible Net Contact Stress (ksf)	Factored Gross Nominal Bearing Resistance (ksf)	Factored Gross Nominal Bearing Resistance (ksf)
Abut 1	10.0	44.0	685.5	4.0	5.76	5.37	N/A	N/A	N/A
Abut 2	10.0	47.2	688.0	5.5	6.05	6.22	N/A	N/A	N/A

 Table 7 – Foundation Design Recommendations for Spread Footings ^{1,2}

Notes: 1) Recommendations are based on the foundation geometry and loads provided by the Design Engineer. The footing contact area is taken as equal to the effective footing area, where applicable.
2) See Memo to Designers (MTD) 4-1 for definitions and applications of the recommended design parameters.

For bearing capacity analysis, BCI used a friction angle of 34° with no cohesion for engineered fill and modeled ground water at elev. 672.0 ft. We determined a modified bearing capacity factor (N_{yq}) for the abutment footings established adjacent to sloping ground based after Meyerhof (1957) which assumes cohesionless soils. We include our spread footing design calculations, including determination of N_{yq}, in Appendix D.

12.1.1 Slope Stability

The abutments will be founded within new embankment fill. Maximum proposed end-slope gradients are 1.5(H):1(V) at both abutments. The fill thickness ranges from about 14.5 feet and 16 feet below the Abutment 1 and Abutment 2 foundations, respectively.

We evaluated Abutment 2 established in new embankment for global stability with respect to static loading and pseudostatic (seismic) loading conditions. For pseudostatic conditions we used a horizontal seismic acceleration coefficient of 0.1. We expect conditions at Abutment 1 to be the same or better.

BCI used SLIDE 6.0 limit equilibrium slope stability software by Rocscience, Inc. to analyze slope stability. We analyzed the cross-section using the Spencer method of slices, which satisfies both force and moment equilibrium, and circular shaped failure surfaces. We anticipate that coarse granular material with a silt/clay matrix will be used for new embankment. For our analysis, we used an angle of internal friction equal to 33° with a nominal cohesion value of 275 psf to model the new embankment fill placed in front of the abutment, below the abutment footing, and to at least 5 ft behind the heel of the abutment footing. We modeled the underlying decomposed and very intensely fractured rock with a friction angle of 40°; moderately weathered rock with a friction angle of 43°.

The computed slope stability factor of safety for static loading is 1.5, and for pseudostatic loading is 1.3. We expect that the proposed abutments established within new embankment will be appropriately stable.

We include the graphical outputs from our stability trials that show soil/rock parameters and foundation loading conditions used in our analysis in Appendix D.

12.1.2 Lateral Resistance

Calculate lateral load resistance of spread footings for seismic or other transient loads as follows:

- A soil friction factor (tan δ) of 0.45 for cast in-place concrete foundations bearing on engineered fill. This value is consistent with a friction angle (ϕ_f) of 33°.
- An allowable passive pressure of 270 pcf equivalent fluid pressure against the face of the footing (based on formed footings with compacted structure backfill); neglect the upper 3 feet of soil depth (from final ground surface) in determination of passive earth pressure due to potential soil disturbance/removal.
- Passive and friction resistance may be combined.

12.1.3 Settlement

We determined the settlement of spread footing foundations at the abutments based on elastic settlement theory using Schmertmann's Modified Method. We conservatively modeled the rock underlying the embankment fill as a very dense soil. For spread footings established as above, we estimate that settlement will be about 1.8 inches at Abutment 1 and 1.3 inches at Abutment 2 and will occur substantially during construction. We expect differential settlement to be less than one-half of the total realized settlement.

We include our settlement calculations in Appendix D.

12.2 Approach/Abutment Backfill Earthwork

12.2.1 Fill Material

The source of borrow material for construction of approach fills has not been identified. All engineered fill materials placed and compacted (per CTM 216) in front of abutments, below abutment footings, and to at least 5 ft behind the heel of abutment footings must have a minimum friction angle (ϕ_f) of 33° and minimum cohesion of at least 275 psf.

Proposed borrow must be tested (including the minimum soil strength criteria designated above) and approved for use by the project engineer and BCI prior to transporting to the site.

12.2.2 Expansive Material

Expansive materials shall not be placed as part of the embankment within the limits of the bridge abutment for the full width of the embankment. Low expansion material is defined as having an Expansion Index (EI) less than 50 (per ASTM D4829), and a Sand Equivalent (SE) greater than 20 (per California Test 217).

12.2.3 Geometry and Stability

The maximum fill height at the bridge abutments will range from about 25 to 30 feet. Approach side-slopes will have a gradient of 2:1 or flatter and the end-slopes will have a gradient of 1.5:1. The proposed geometries are common slope gradients considered stable for typical approach fill construction.

In our opinion, the proposed new 2:1 side-slopes and 1.5:1 end-slopes will be stable provided the new slopes are constructed in accordance with current Caltrans Standard Specifications. The generally hard/dense nature of the underlying native soil and rock will provide a stable base on which to construct the fills.

12.2.4 Site Preparation

In the area of the proposed approach fills, clear and grub existing slopes in accordance with the Caltrans "Standard Specifications", Section 16. Construct structure backfill at the abutments in accordance with the "Standard Specifications", Section 19-3.06. Construct the embankment approach fills in accordance with the "Standard Specifications", Section 19-6.01. The project geotechnical engineer must approve the prepared ground surface prior to placement of approach fill.

12.2.5 Settlement

Due to the presence of shallow rock, we do not anticipate significant settlement at approaches. We expect post-construction settlement between the abutment backwall and adjacent approach fills/backfill to be less than ½-inch, provided structure backfill is compacted in accordance with the "Standard Specifications." A waiting period is not necessary.

12.2.6 Lateral Earth Pressures

Use the following EFWs to design the abutments walls and wing walls at Abutments 1 and 2:

Condition	EFW Static	EFW Seismic
Active	36 lb/ft^3	4 lb/ft^3
At-Rest	55 lb/ft^3	7 lb/ft^3
Passive	270 lb/ft^3	250 lb/ft^3

For static design, apply the resultant of the static active earth pressure (36 lb/ft^3) at a depth of 0.33H from the base of the wall where H equals the wall height in feet.

For seismic design, calculate the resultant of incremental lateral soil pressure due to seismic loading based on an equivalent fluid pressure of 4 lb/ft^3 for active condition and 7 lb/ft^3 for at-rest condition. Apply the magnitude of the resultant seismic active and at-rest pressures at 0.5H from the base of the wall. Add the resultant of the seismic earth pressure to the resultant of the static earth pressure.

The values shown above are consistent with Caltrans standards/practice and assume level backfill conditions using Caltrans "Structure Backfill" with a soil unit weight of 120 pcf, a minimum angle of internal friction of 33°, and that drainage behind walls is placed in accordance with Caltrans "Standard Plans and Specifications."

To limit wall deflection to acceptable levels, BCI applied a factor of safety of 2.0 to the ultimate passive pressure to generate the allowable passive pressures provided above.

BCI estimated the EFWs for seismic loading using the Mononobe-Okabe equation for active and passive lateral coefficients K_a and K_p . We estimated the at-rest coefficient, K_o , for the seismic condition using an increase ratio similar to the active condition. In the Mononobe-Okabe equation, BCI used a horizontal seismic acceleration coefficient (k_h) of 0.11 calculated using the equation in Chapter 11, Section 11.6.5 of the AASHTO LRFD Bridge Design Specifications-4th Edition. This k_h value assumes that the walls displace at least 1-inch during the design seismic event. BCI calculated the above static EFWs using methods presented in the 1982 Naval Facilities (NAVFAC) Design Manual 7.2.

For seismic loading into abutments, use a maximum passive pressure of 5.0 ksf for longitudinal abutment response, with the proportionality factor presented in Section 7.8.1 of Caltrans Seismic Design Criteria v.1.6 (November 2010).

For surcharge loads, apply an additional uniform lateral load behind the wall equivalent to 0.3-times the surcharge pressure. Use a soil friction factor (tan δ) of 0.45 for cast in-place concrete foundations bearing on compacted fill materials. The passive pressures are applicable for concrete placed directly compacted fill.

13 CONSTRUCTION CONSIDERATIONS

13.1 Cuts and Excavations

Typical grading equipment such as scrapers, dozers, backhoes and excavators are sufficient to excavate surficial soil and decomposed to intensely weathered rock at the proposed overcrossing.

Temporary slopes may be required for foundation construction. The contractor is responsible for design and construction of excavation sloping and shoring in accordance with CalOSHA requirements and the Caltrans "Trenching and Shoring Manual." Where the use of excavation sloping and/or shoring is required, a competent person must classify each soil deposit as Type A, Type B, or Type C in accordance with OSHA procedures, and shall confirm the soil types during construction. Based on our investigation, we preliminarily classify native soils as Type B. Design excavation sloping and/or shoring located in any fill material in accordance with Type C soils.

13.2 Fill Material

Perform approach fill earthwork in accordance with Section 19 of Caltrans Standard Specifications.

Import borrow sources are not yet identified and, therefore, imported embankment materials cannot be evaluated. Material used for backfill at abutments must meet the requirements for Structure Backfill. Additionally, all engineered fill placed and compacted (per CTM 216) in front of abutments, below abutment footings, and to at least 5 ft behind the heel of abutment footings must have a minimum friction angle (ϕ_f) of 33° and minimum cohesion of at least 275 psf.

Proposed borrow must be tested (including the minimum soil strength criteria designated above) and approved for use by the project engineer and BCI prior to transporting to the site.

13.3 Spread Footings

Pour footing concrete "neat" (without forming), against trimmed, intact bearing material within clean and dry excavations. If forming is necessary, backfill excavations outside footing limits with lean concrete or suitable backfill (i.e. "Structure Backfill" per Caltrans "Standard Specifications" and meeting the strength criteria designated above) compacted to at least 95% relative compaction (per CTM 216).

13.4 Dewatering

We do not anticipate the presence of significant ground water within footing excavations during dry season construction (June through October). If/where seepage is encountered, we expect it can be controlled with sump pumps. Winter or spring construction may encounter perched ground water, possibly under head, and require additional controls.

13.5 Naturally Occurring Asbestos

During our site reconnaissance and subsurface exploration we did not observe outcrops containing serpentinite or other ultramafic rock, a host rock for naturally occurring asbestos minerals (NOA), or significant bands of fibrous (asbestiform) minerals within the visible bedrock. As discussed above, NOA mapping does not show the project within an ultramafic rock area, although the project is near mapped faults and other areas known to contain naturally occurring asbestos. We cannot rule out the potential for NOA to occur at the project site and it will need to be considered as a potential risk during construction.

Based on the preliminary test results, and the unknown origin of fill placed during road construction in the 1960's (and previous), BCI recommends preparation of an Asbestos Hazard Mitigation Plan in compliance with provisions of El Dorado County Air Quality Management District (EDAQMD) Rule 223-2.and California Air Resources Board requirements, as applicable.

Visually monitor rock types exposed during construction for the potential presence of naturally occurring asbestos (NOA) minerals. If construction activities expose NOA, comply with the applicable provisions of EDAQMD Rule 223-2 and the State of California Asbestos Airborne Toxic Control Measure (ACTM), CCR Title 17, Section 93105. In addition, prepare a worker health and safety program for excavations in areas with NOA in accordance with all regulatory requirements, including CAL OSHA.

13.6 Storm Water Quality

We expect that construction term erosion control will be available by means of typical good construction practices (e.g., use of erosion barriers, synthetic slope covers, hydro-seeding, etc.). This project will involve earthwork and we expect that the contractor will be required to develop a Storm Water Pollution Prevention Plan.

14 RISK MANAGEMENT

Our experience and that of our profession clearly indicates that the risks of costly design, construction, and maintenance problems can be significantly lowered by retaining the geotechnical engineer of record to provide additional services. For this project, retain BCI to:

- Review and provide written comments on the (civil, structural) plans and specifications prior to construction.
- Monitor construction to check and document our report assumptions. At a minimum, we should confirm embankment soil strength parameters, monitor/review footing excavations, and observe and test fill construction.
- Update this report if design changes occur, 2 years lapse between this report and construction, or site conditions change.

If BCI is not retained to perform the above applicable services, we are not responsible for any other parties' interpretation of our report, and subsequent addendums, letters, and discussions.

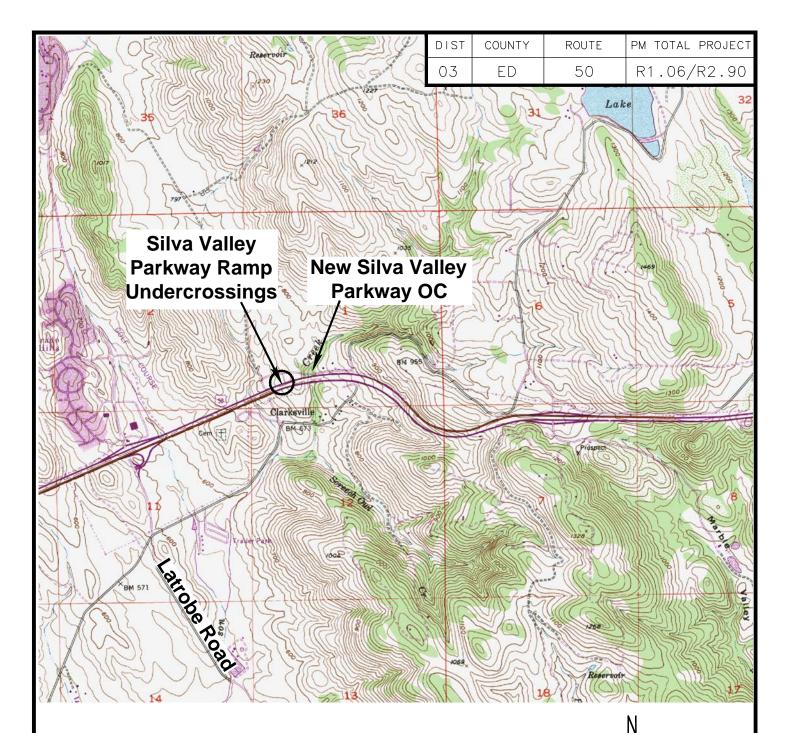
15 LIMITATIONS

BCI performed services in accordance with generally accepted geotechnical engineering principles and practices currently used in this area. We do not warranty our services.

BCI based this report on the current site and project conditions. We assumed the soil/rock/groundwater conditions we observed in our borings are representative of the subsurface conditions on the site. Actual conditions between borings could be different.

Our scope did not include an evaluation of potential flooding or hazardous materials on site.

Use this foundation report only for the design and construction of the Silva Valley Eastbound Off-Ramp UC.

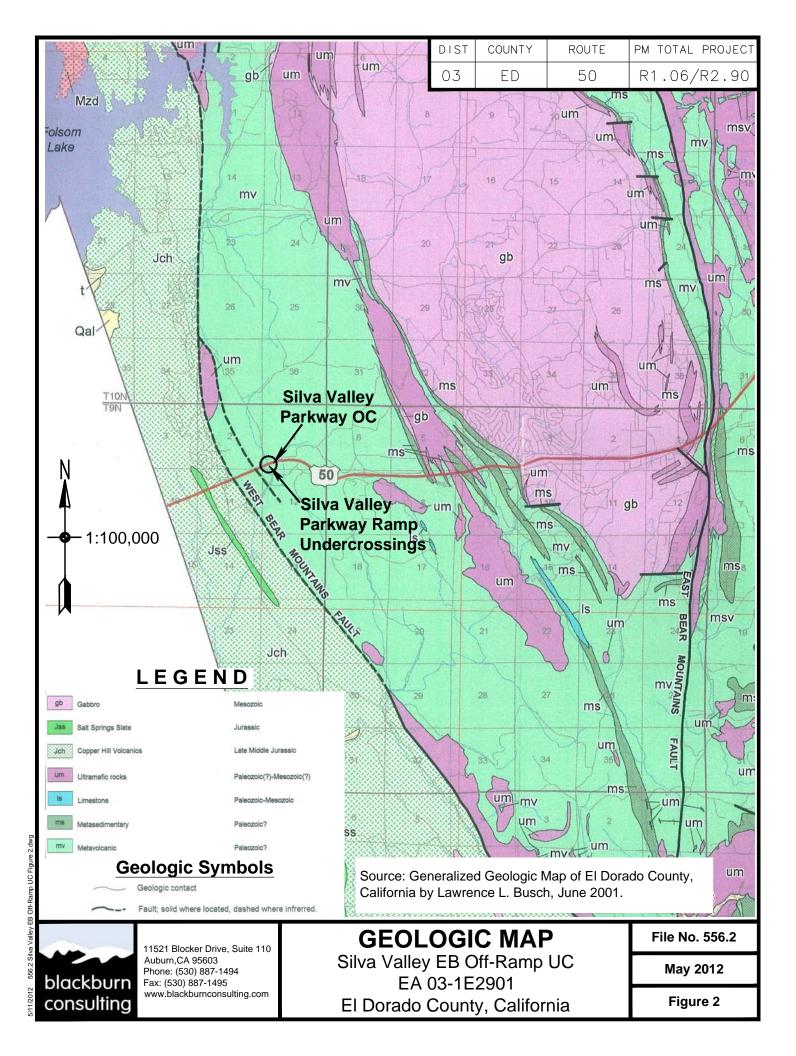

Modern design and construction is complex, with many regulatory sources, restrictions, involved parties, construction alternatives, etc. It is common to experience changes and delays. The owner should set aside a reasonable contingency fund based on complexities and cost estimates to cover changes and delays.

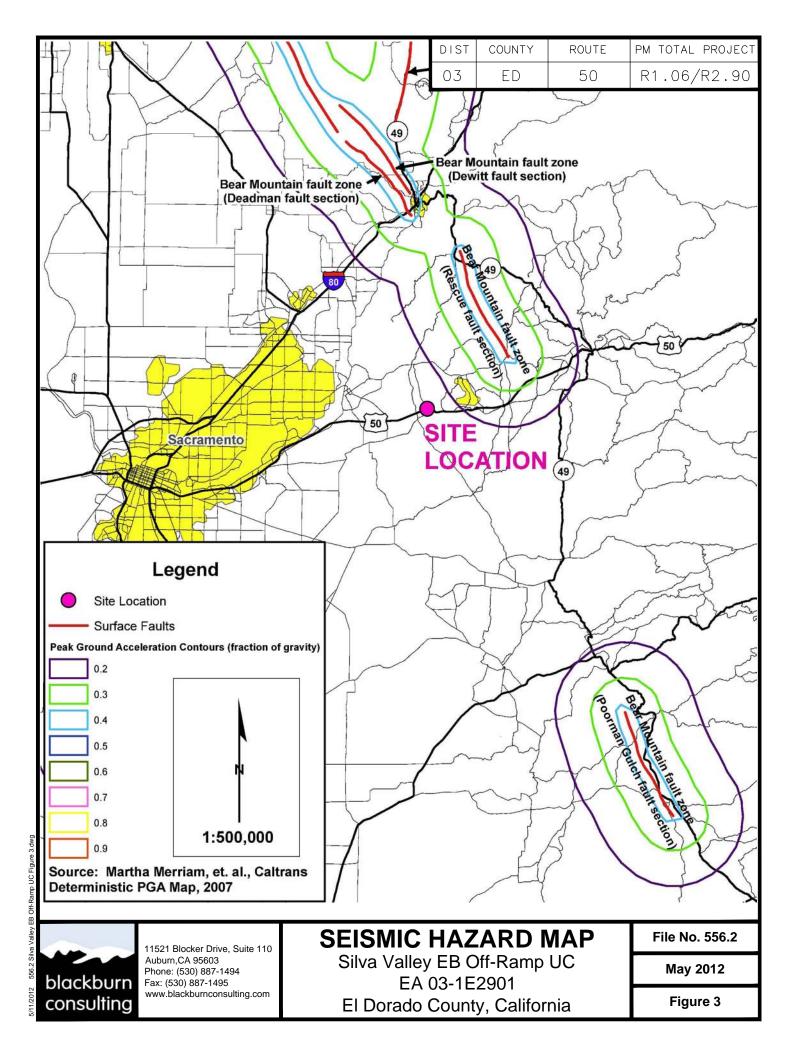
The interface between soil and rock materials on the logs is approximate. The transition between materials may be abrupt or gradual. We base our recommendations on the final logs, which represent our interpretation of the field logs and general knowledge of the site and geological conditions.

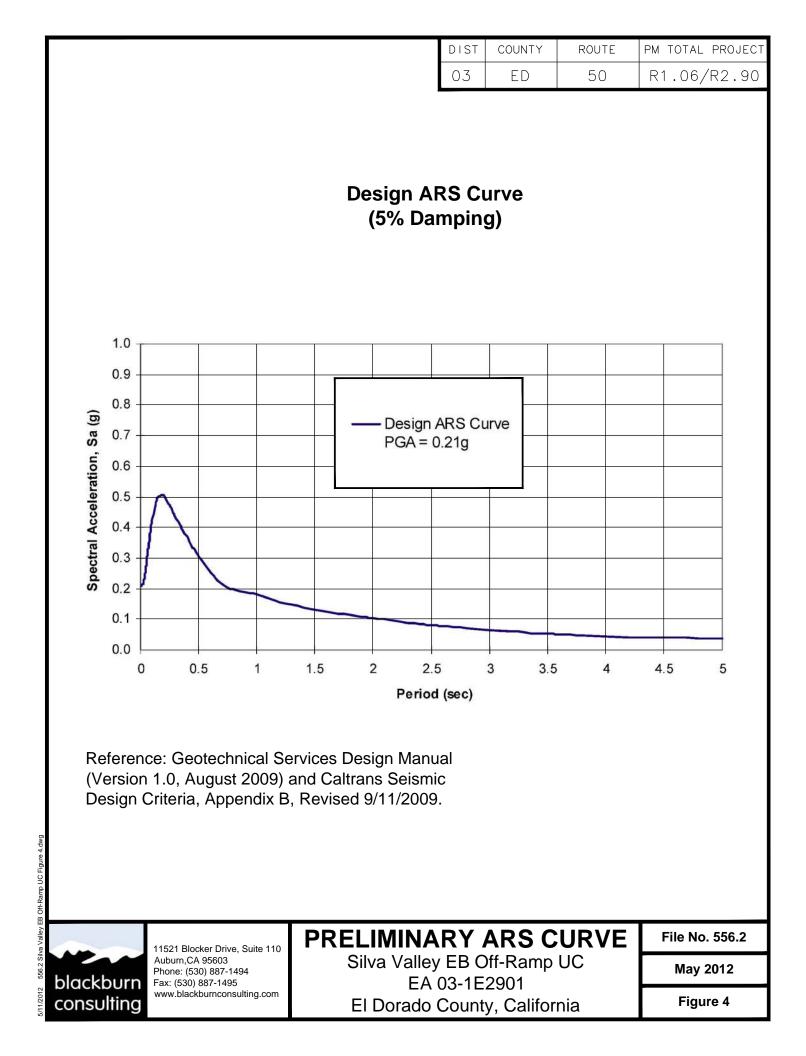
APPENDIX A

Figure 1: Vicinity Map Figure 2: Regional Geologic Map Figure 3: Seismic Hazard Map Figure 4: ARS Curve

blackburn

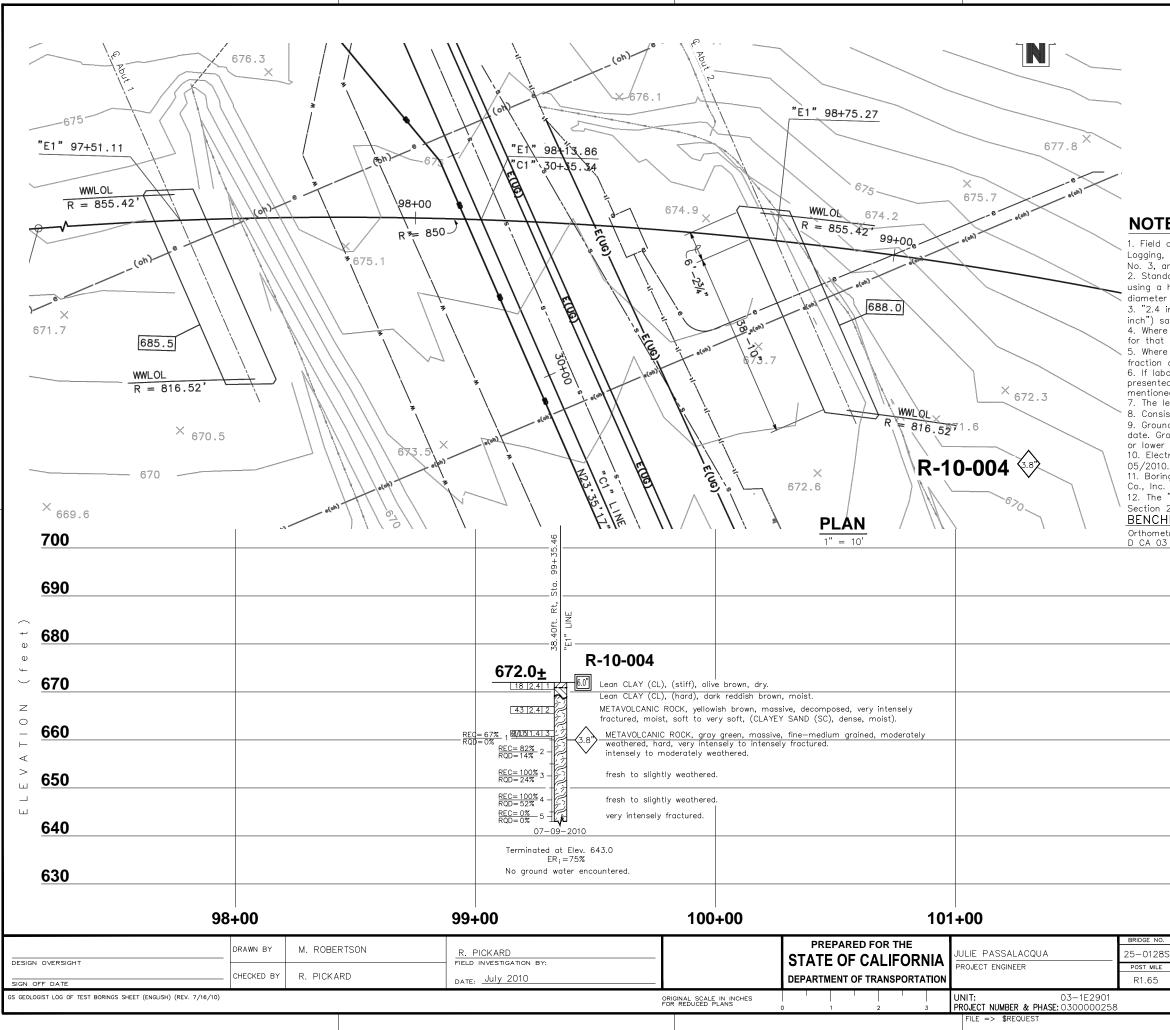

consulting


Source: MAPTECH Terrain Navigator Pro, v. 7.01, USGS topographic map, 7.5 minute quadrangle, 1:24000, Clarksville 1953 (revised 1980).


11521 Blocker Drive, Suite 110 Auburn,CA 95603 Phone: (530) 887-1494 Fax: (530) 887-1495 www.blackburnconsulting.com VICINITY MAP Silva Valley EB Off-Ramp UC EA 03-1E2901 El Dorado County, California SCALE: 1"=0.5 Miles

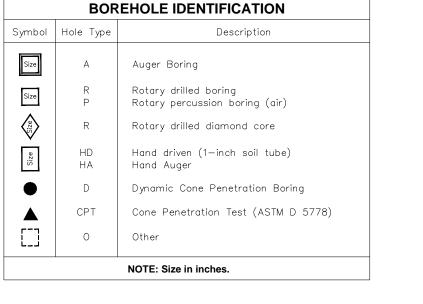
File No. 556.2

May 2012 Figure 1

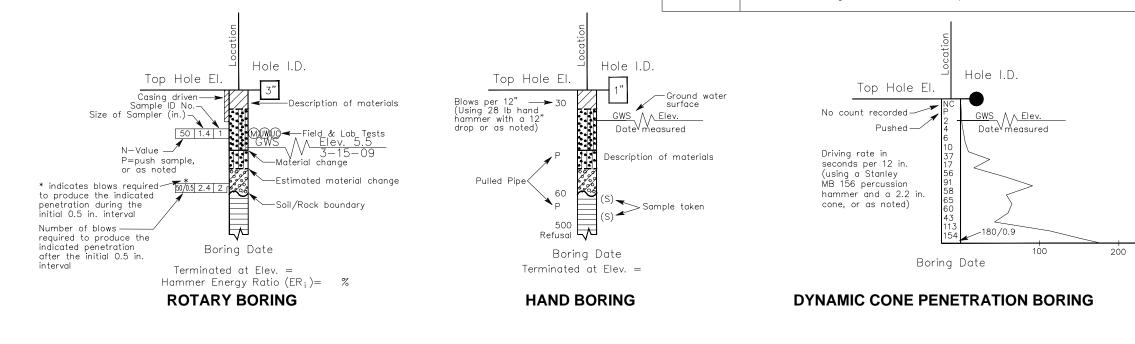


APPENDIX B

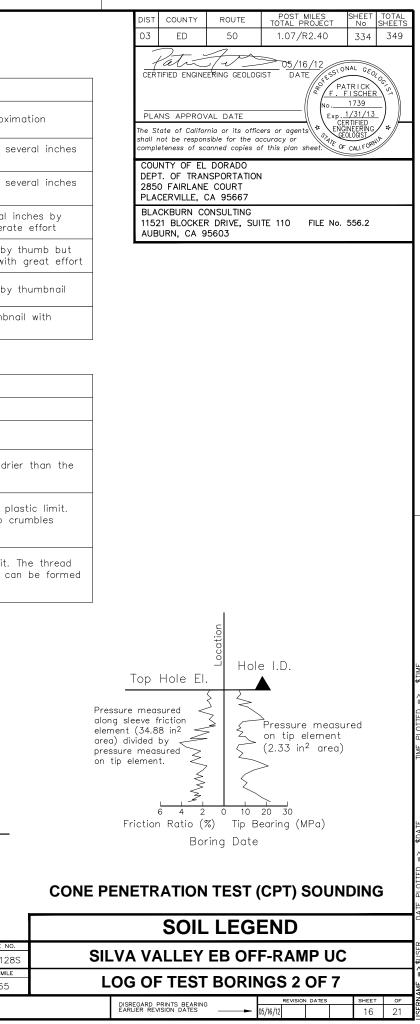
Log of Test Borings (7 sheets)



	_				ck est Borings 5/8-inch SPT ("1.4 t shown is a that s the before g. vecified r at higher ed Thomas & with DO BO C C C C C C C C C C	
	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT		TOTAL SHEETS
	03	ED	50	1.07/R2.40		
	-		1.		1	1
	_7	Vali	7.0-	<u>05/16/12</u>	NAL GE	
	CER	TIFIED ENGINE	ERING GEOLOGI	ST DATE	TRICK	8 20
				Q F.		<u>5</u> / 2/
		NS APPROV	AL DATE	(No	1/31/13	_)
			nia or its office	ers or agents	R IIFIED	/ #/
	shall r	not be respon	sible for the ac	f this plan sheet.	ULOGIST	ur/
				pion sneet.	UnLI .	·
		NTY OF EL T. OF TRAN	DORADO ISPORTATION			
	285	0 FAIRLANE	COURT			
		CERVILLE, C				
		CKBURN CO 21 BLOCKEF		TE 110 FILE No.	556.2	
ES:	AUB	URN, CA 9	5603			
classification of soils was						
Classification, and Prese nd 4, "Soil Legend" and). See Log of le	est Bor	ings
ard Penetration tests we	ere pe	erformed in	n accordanc			
hammer operated with a "A"-rods; sampler was				Drill rods were 1	5/8-i	nch
inch sampler": ID=2.4 in				same manner as	SPT ("1.4
ompler Less than the 0.5 inche	he of	nenetratio	n is achieve	d the blow court	, t chow	n is
less than the 0.5 inche fraction of the interval	actua	İly penetro	ited.			11 15
indicated by an asteris					that	
of the initial 0.5 ft. "see oratory tests are not sh					s	
d in the LOTB are based						fore
ed Manual. ength of each sampled i	ntervo	al is showr	graphically	on the boring lo	g.	
stency of soils shown in	() v	vhere estir	nated.	, s		
dwater surface (GWS) re oundwater surface is sub						
elevations depending on	the	conditions	at any part	icular time.		5
ronic media for plan vie	w pro	widea by N	iurk inomas	s ac co., inc., dat	eu	
g elevations are approxim	mate	and based	l on plans p	provided by Mark	Thomas	s &
"Log of Test Borings" dr				s in accordance v	vith	
2—1.03 of Caltrans "Star	ndard	Specificat	ions".			
I <mark>MARK 1</mark> tric Heights shown are NG	SVD 2	9. Based	on HPGN			
DL having an elevation of				7(10	
				~	`	
				69	10	
				~	ົາດ	
				68	<u>50</u>	υ
						-
				67	<u>()</u>	~
					Z	Z
				-		>
				66		_
				-	~	
				65	าก	
				-		Ц
				64	10	
				63	<u>50</u>	
				PROFILE		
				HOR. 1"=20"	_	
				VERT. 1"=10'		
	VA		EB OF	-RAMP UC	;	
-	i OF	TEST	BORIN	GS 1 OF 7		
	_	PRINTS BEARING	;	REVISION DATES		
EARL	IER REV	ISION DATES	O	5/16/12	15	21

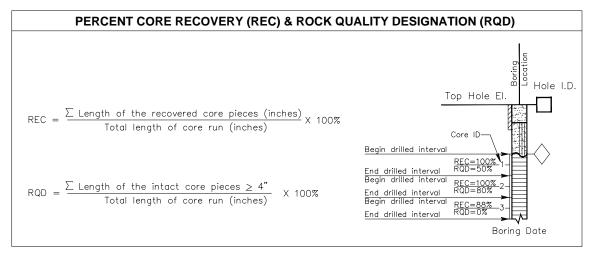

E PLOTTED =>

	CEMENTATION
Description	Criteria
Weak	Crumbles or breaks with handling or little finger pressure.
Moderate	Crumbles or breaks with considerable finger pressure.
Strong	Will not crumble or break with finger pressure.


		CONSISTENCY	OF COHESIVE	SOILS
Description	Unconfined Compressive Strength (tsf)	Pocket Penetrometer Measurement (tsf)	Torvane Measurement (tsf)	Field Approxi
Very Soft	<0.25	<0.25	<0.12	Easily penetrated s by fist
Soft	0.25 to 0.50	0.25 to 0.50	0.12 to 0.25	Easily penetrated s by thumb
Medium Stiff	0.50 to 1.0	0.50 to 1.0	0.25 to 0.50	Penetrated several thumb with moderc
Stiff	1 to 2	1 to 2	0.50 to 1.0	Readily indented by penetrated only wit
Very Stiff	2 to 4	2 to 4	1.0 to 2.0	Readily indented by
Hard	> 4.0	> 4.0	> 2.0	Indented by thumbr difficulty

	PLASTICITY OF FINE-GRAINED SOILS
Description	Criteria
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.
Low	The thread can barely be rolled and the lump cannot be formed when drive plastic limit.
Medium	The thread is easy to roll and not much time is required to reach the plo The thread cannot be rerolled after reaching the plastic limit. The lump co when drier than the plastic limit.
High	It takes considerable time rolling and kneading to reach the plastic limit. can be rerolled several times after reaching the plastic limit. The lump ca without crumbling when drier than the plastic limit.

							BRIDGE NO.
	DRAWN BY	M. ROBERTSON	R. PICKARD		STATE OF CALIFORNIA	JULIE PASSALACQUA	25-0128S
Design oversight Field investigation by: STATE OF CALIFORNIA PROJECT ENGINEER sign off date CHECKED BY R. PICKARD Date: July 2010 Department of transportation VIII: 03-1E	PROJECT ENGINEER	POST MILE					
SIGN OFF DATE	CHECKED BY	R. PICKARD	date: July 2010		DEPARTMENT OF TRANSPORTATION		R1.65
GS LOTB SOIL LEGEND SHEET 1 (ENGLISH) (REV. 7/16/10)				ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0 1 2 3	UNIT: 03-1E2901 PROJECT NUMBER & PHASE: 030000258	3
						FILE => \$REQUEST	


	GROUP SYMBO								
phic/Symbol	Group Names	Graphic/Symbol		Group Names					
GW	Well-graded GRAVEL Well-graded GRAVEL with SAND		CL	Lean CLAY Lean CLAY with SAND Lean CLAY with GRAVEL SANDY lean CLAY SANDY lean CLAY with GRAVEL					
GP	Poorly-graded GRAVEL Poorly-graded GRAVEL with SAND			GRAVELLY lean CLAY GRAVELLY lean CLAY with SAND					
GW-GM	Well-graded GRAVEL with SILT Well-graded GRAVEL with SILT and SAND		CL-ML	SILTY CLAY SILTY CLAY with SAND SILTY CLAY with GRAVEL SANDY SILTY CLAY					
GW-GC	Well-graded GRAVEL with CLAY (or SILTY CLAY) Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)			SANDY SILTY CLAY with GRAVEL GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND					
GP-GM	Poorly-graded GRAVEL with SILT Poorly-graded GRAVEL with SILT and SAND Poorly-graded GRAVEL with CLAY		ML	SILT SILT with SAND SILT with GRAVEL SANDY SILT					
GP-GC	Poorly—graded GRAVEL with CLAY (or SILTY CLAY) Poorly—graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		WIL	SANDY SILT with GRAVEL GRAVELLY SILT GRAVELLY SILT with SAND					
GP-GC	SILTY GRAVEL SILTY GRAVEL with SAND		01	ORGANIC lean Clay ORGANIC lean Clay with SAND ORGANIC lean Clay with GRAVEL SANDY ORGANIC lean CLAY					
GC	CLAYEY GRAVEL CLAYEY GRAVEL with SAND	OL		SANDY ORGANIC lean CLAY with GRAVEL GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SANE					
GC-GM	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL with SAND		OL	ORGANIC SILT ORGANIC SILT with SAND ORGANIC SILT with GRAVEL SANDY ORGANIC SILT					
▲ ▲ SW	Well-graded SAND Well-graded SAND with GRAVEL		UL	SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND					
SP	Poorly-graded SAND Poorly-graded SAND with GRAVEL		СН	Fat CLAY Fat CLAY with SAND Fat CLAY with GRAVEL SANDY fat CLAY					
SW-SM	Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL		Ch	SANDY fat CLAY with GRAVEL GRAVELLY fat CLAY GRAVELLY fat CLAY with SAND					
SW-SC	Well-graded SAND with CLAY (or SILTY CLAY) Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		МН	Elastic SILT Elastic SILT with SAND Elastic SILT with GRAVEL SANDY elastic SILT					
SP-SM	Poorly-graded SAND with SILT Poorly-graded SAND with SILT and GRAVEL			SANDY elastic SILT with GRAVEL GRAVELLY elastic SILT GRAVELLY elastic SILT with SAND					
SP-SC	Poorly-graded SAND with CLAY (or SILTY CLAY) Poorly-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		ОН	ORGANIC fat CLAY ORGANIC fat CLAY with SAND ORGANIC fat CLAY with GRAVEL SANDY ORGANIC fat CLAY					
SM	SILTY SAND SILTY SAND with GRAVEL		011	SANDY ORGANIC fat CLAY with GRAVEL GRAVELLY ORGANIC fat CLAY GRAVELLY ORGANIC fat CLAY GRAVELLY ORGANIC fat CLAY with SAND					
SC	CLAYEY SAND CLAYEY SAND with GRAVEL		ОН	ORGANIC elastic SILT ORGANIC elastic SILT with SAND ORGANIC elastic SILT with GRAVEL SANDY ORGANIC elastic SILT					
SC-SM	SILTY, CLAYEY SAND SILTY, CLAYEY SAND with GRAVEL		011	SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT GRAVELLY ORGANIC elastic SILT with SAND					
선 실 산 PT	PEAT	ר זר זר רד דר רד דר רד דר	OH/OL	ORGANIC SOIL ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL SANDY ORGANIC SOIL					
	COBBLES COBBLES and BOULDERS BOULDERS		UTTY UL	SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL GRAVELLY ORGANIC SOIL with SAND					

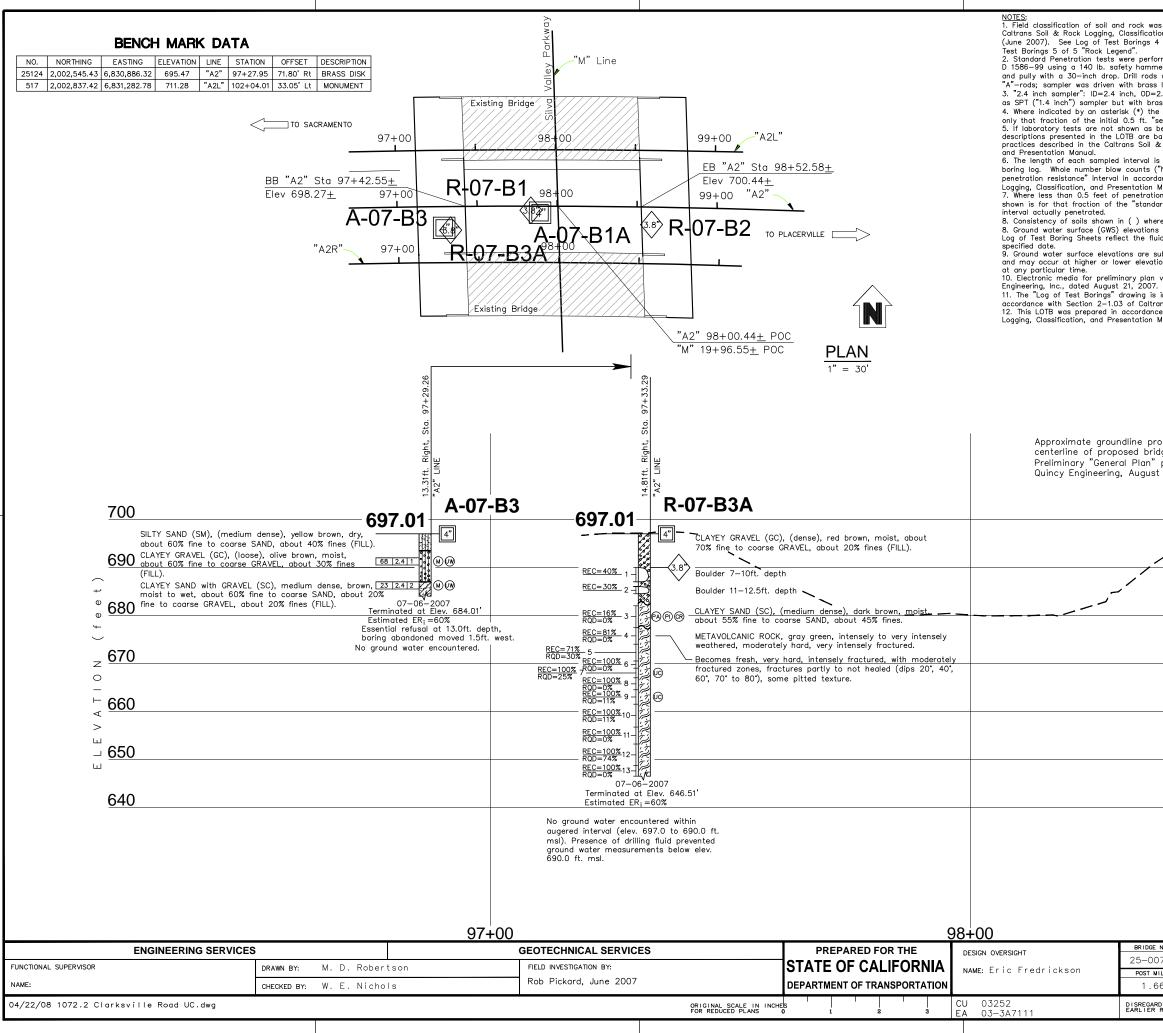
FII	ELD AND LABORATORY TESTING	
(Consolidation (ASTM D 2435)	_
	Collapse Potential (ASTM D 5333)	
	Compaction Curve (CTM 216)	
	Corrosivity Testing (CTM 643, CTM 422, CTM 417) Consolidated Undrained Triaxial (ASTM D 4767)	APPARENT Description
	Direct Shear (ASTM D 3080)	Very Loose
	Expansion Index (ASTM D 4829)	Loose
	Moisture Content (ASTM D 2216)	Medium Dens
)	Organic Content-% (ASTM D 2974)	Very Dense
)	Permeability (CTM 220)	
)	Particle Size Analysis (ASTM D 422)	Description
)	Plasticity Index (AASHTO T 90) Liquid Limit (AASHTO T 89)	Dry
)	Point Load Index (ASTM D 5731)	Moist
)	Pressure Meter	Wet
)	Pocket Penetrometer	
)	R-Value (CTM 301)	PERCE
)	Sand Equivalent (CTM 217)	Description Trace
)	Specific Gravity (AASHTO T 100)	Few
)	Shrinkage Limit (ASTM D 427)	Little
D	Swell Potential (ASTM D 4546)	Some
)	Pocket Torvane	Mostly
)	Unconfined Compression-Soil (ASTM D 2166) Unconfined Compression-Rock (ASTM D 2938)	Descrip Boulder
)	Unconsolidated Undrained	Cobble
D	Triaxial (ASTM D 2850) Unit Weight (ASTM D 2937)	Gravel
)	Vane Shear (AASHTO T 223)	Sand

2 Si					U							
556.	DESIGN OVERSIGHT	DRAWN BY	M. ROBERTSON	R. PICKARD		PREPARED FOR THE STATE OF CALIFORNIA	JULIE PASSALACQUA	bridge no. 25-0128S	SILVA VA	LLEY EB OFF-R	AMP UC	
012	SIGN OFF DATE	CHECKED BY	R. PICKARD	DATE: July 2010		DEPARTMENT OF TRANSPORTATION	FROJECT ENGINEER	POST MILE R1.65	LOG OF	TEST BORINGS	3 OF 7	
5/14,	GS LOTB SOIL LEGEND SHEET 2 (ENGLISH) (REV. 7/16/10)				ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0 1 2 3	UNIT: 03-1E2901 PROJECT NUMBER & PHASE: 0300000258		DISREGARD PR EARLIER REVIS	INTS BEARING	REVISION DATES	<u>SHEET</u> ОF 17 21
							FILE => \$REQUEST					

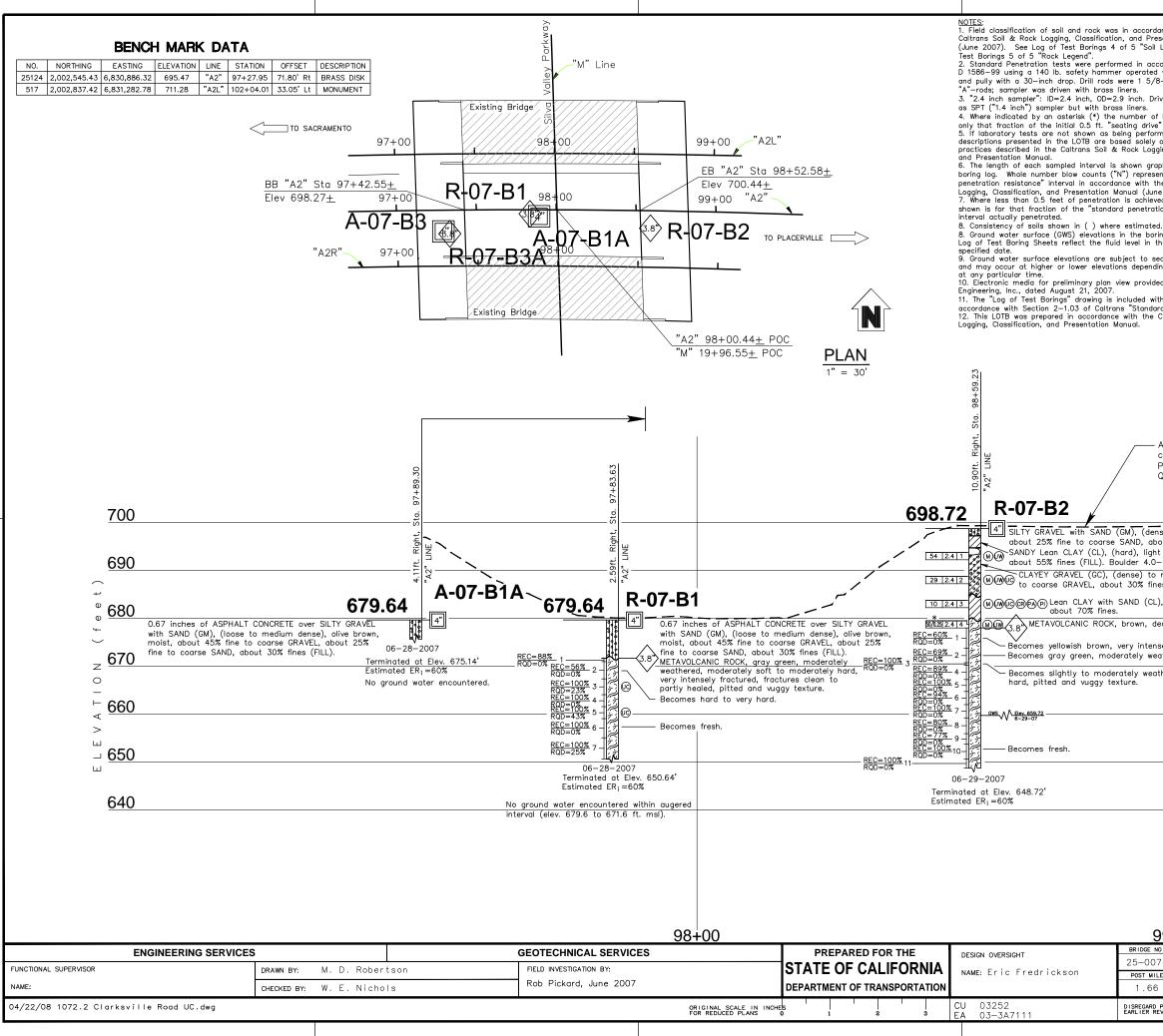
			DIST	COUNTY	ROUTE	POST MIL TOTAL PRO	ES JECT	SHEET No	TOTAL SHEETS
			03	ED	50	1.07/R2	.40	335	349
				Patri	70	> 05/16/	12 🥢		_
			CER	TIFIED ENGINE	ERING GEOLO	GIST DATE	-// cs\	ATRICK	200
						()	$\frac{2}{F}$	ATRICK FISCHEI 1739	<u>R</u>
			PLA	NS APPRO	AL DATE		Exp	1/31/13	
			The S shall compl	tate of Califo not be respor eteness of sc	rnia or its offi nsible for the c canned copies	cers or agents accuracy or of this plan she		ERTIFIED GINEERING EOLOGIST F CALIFOR	NIP X
			COU DEP 285	INTY OF EL	. DORADO NSPORTATIO E COURT				
			BLA 115:	CKBURN C	ONSULTING R DRIVE, SU	IITE 110 FI	LE No	. 556.2	
PAREI	NT DEN		COHESIC						
Descript	tion	SPT N	₆₀ —Value (Bl	ows / 12	inches)	_			
ery Loo	se		0 —	4					
oose			5 – 1	10					
edium l	Dense		11 —	30					
ense			31 —	50		_			
ery Den	ise		> 50)		_			
		MOIS	TURE						
Descript	tion		Crite	ria					
ſу		Absenc touch	e of moisture	e, dusty,	dry to the	2			
oist		Damp b	out no visible	water					
et			free water, u vater table	sually soi	l is				
PER	CENT C	R PRO	PORTION	OF SOI	LS				
Descript	tion		Crite	ria					
ace			s are presen than 5%	t but est	imated to				
ew			5 to 1	0%					
ttle			15 to 2	25%					
ome			30 to 4	45%					
ostly			50 to 1	00%					
		PARTIC	LE SIZE						
Des	scription			Size					
lder			> 12"			_			
ble			3" to			_			
vel	Coars	e		to 3"		_			
	Fine	_		to 3/4"	4	_			
_	Coars) to No.		_			
d	Mediu	m		0 to No.		_			
	Fine		NO. 2	00 to No.	. 40				

REFERENCE: CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL, (JUNE, 2007)

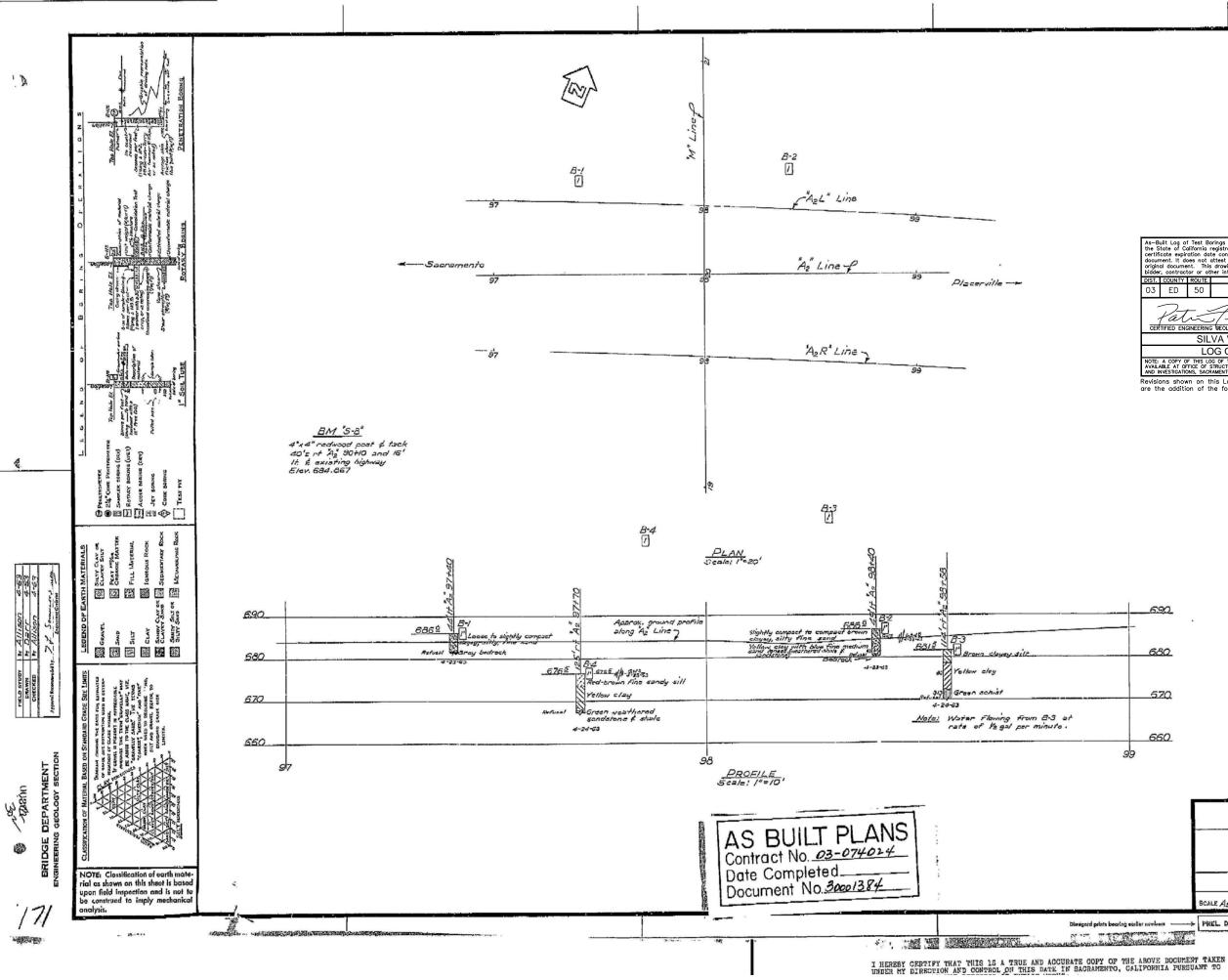
RELATIVE ST	RENGTH OF INTACT ROCK
Term	Uniaxial Compressive Strength (PSI)
Extremely Strong	> 30,000
Very Strong	14,500 - 30,000
Strong	7,000 - 14,500
Medium Strong	3,500 - 7,000
Weak	700 – 3,500
Very Weak	150 - 700
Extremely Weak	< 150


									DOCT NU CO	lourer			
						DIST 03	COUNTY	route 50	POST MILES TOTAL PROJEC 1.07/R2.40		SHEETS		
								1	,				
						CERT	IFIED ENGINE	ERING GEOLOG	IST DATE	SSI ONAL GE PATRICK F. FISCHE	0100		
	BEDDING	SPAC	NG						// /N	1739			
	Description	Thickn	ess / Spacing	3		PLANS APPROVAL DATE Exp. <u>1/31/13</u> CERTIFIED The State of California or its officers or agents the State							
М	assive	Grea	iter than 10 f	t		comple	eteness of so	anned copies o	ccuracy or f this plan sheet.	GEOLOGIST	ANIA		
Ve	ery thickly bedded	3 to) 10 ft			DEP	NTY OF EL T. OF TRAI D FAIRLANI	SPORTATION	1				
Tł	nickly bedded	1 to	3 ft			PLA	CERVILLE,						
М	oderately bedded	3-5	/8" to 1 ft			1152		R DRIVE, SUI	TE 110 FILE	No. 556.2			
Tł	ninly bedded	1-1,	/4" to 3-5/8	"	LEGEN			ATERIALS	6				
Ve	ery thinly bedded	3/8	" to 1-1/4"			IGNE	OUS ROCK						
Lo	ERING DESCRIPTORS F		than 3/8"	_		SEDI	MENTARY	ROCK					
						MET	MORPHIC	ROCK					
HERI	NG DESCRIPTOR	S FOR	INTACT RO	СК									
Diagr	nostic features			-									
	Mechanical Weathering- Grain boundary condi- tions (disaggregation) primarily for granitics and some coarse-graine sediments		ondi- lexture and s				General	Characteristi	ics				
			Texture	Sol	utioning								
	sediments					Hami	nor ringo	when ervetal	line, realize				
on	No separation, intact (tight).		No change.	No s	olutioning.		struck.	when crystal	Inte rocks				
plete ı or nost	No visible separc intact (tight).	ation,	Preserved.	of so ble n	Minor leaching of some solu— ble minerals may be noted.		ner rings : are struc veakened.						
urfaces I or	Partial separatio boundaries visible	n of e.	Generally		Soluble min- erals may be mostly leached.		ner does i is struck. ghtly weak						
l or is friable; in se		Partial separation, rock is friable; in semiarid conditions granitics are disaggregated. Texture altered by chemical disintegration (hydration, argillation).		solub erals	Leaching of soluble min— erals may be complete.		ner, usuall moderate ure or by ut referen ness such	n struck wit y can be br to heavy mo light hamme ce to planes as incipient or veinlets. f akened.	oken onual er blow s of or hair-				
	Complete separation of complet grain boundaries structur (disaggregated). leaching		Resembles a complete rem structure may leaching of s usually compl	inant r y be pr oluble i	ock reserved;	Resis quart	be granula tant miner z may be igers" or '						
eatures	ed where equal distrib . However, combination ensely weathered" is th	n descript	ors should not	be use	ed where sig	nificant,	identifiab	le zones car					
			Г				ROCI	K LEG	END				
JULIF	PASSALACQUA		bridge no. 25-0128S		SILV	A VA	LLEY	EB OF	F-RAMP	JC			
	ECT ENGINEER		POST MILE R1.65		-				IGS 4 OF				

									03	ED	50		DST MILES AL PROJECT 07/R2.40	No 336	TC SHI
									CERT	IFIED ENGIN	EERING GEOLO	OGIST	1100	ONAL GEO	`o_`
RELATIVE ST	RENGTH OF INTAC	T ROCK		BEDDING	SPAC	ING							No	PATRICK FISCHEF 1739	_)
Term	Uniaxial Compressive S	trength (PSI)		Description	Thick	ness / Spacing	ng The State of California or its officers or ag shall not be responsible for the accuracy o						agents & El	<u>, 1/31/13</u> CERTIFIED NGINEERING GEOLOGIST	Ϊ
Extremely Strong	> 30,000		Mas	sive	Greater than 10 ft				comple	eteness of s	canned copies		or lan sheet.	OF CALL FORM	<u>,</u> ,,//
Very Strong	14,500 - 30,	000	Ver	y thickly bedded	thickly bedded 3 to				DEPT		DORADO	ON			
Strong	7,000 - 14,5	600	Thio	Thickly bedded Moderately bedded		o 3 ft			PLAC	CERVILLE,	CA 95667 ONSULTING				
Medium Strong	3,500 - 7,0	00	Мос			5/8" to 1 ft			1152		R DRIVE, S) FILE No	. 556.2	
Weak			nly bedded	1-1	/4" to 3-5/8	,	LEGEN	O OF R	OCK M	ATERIAL	S				
Very Weak			Ver	y thinly bedded	3/8	3" to 1-1/4"			IGNE	OUS ROCK					
Extremely Weak < 150			Lan	ninated	Les	s than 3/8"			SEDI	MENTARY	ROCK				
								\mathbb{P}	META	MORPHIC	ROCK				
		WEA	THERIN	G DESCRIPTOR	S FOR	INTACT RO	СК								
	Chemical weatherir	iq-Discoloration	Diagno	stic features Mechanical Weather		Tautura		+1 1							
Description	and/or o>	idation Fracture		Grain boundary con tions (disaggregatic primarily for graniti	on)	Texture ar	a solu	tioning		General	Characteris	stics			
	Body of rock	Surfaces		and some coarse- sediments		Texture	Sol	utioning							
Fresh	No discoloration, not oxidized.	No discolorat or oxidation.			tact	No change.	No solutioning.			Hammer rings when crystalline rocks are struck.					
Slightly Weathered	Discoloration or oxida- tion is limited to sur- face of, or short dis- tance from, fractures; some feldspar crystals are dull.	Minor to com discolorization oxidation of surfaces.	n or No visible separa		tion,	Preserved.	Minor leaching of some solu— ble minerals may be noted.		Hammer rings when crystalline rocks are struck. Body of rock not weakened. Hammer does not ring when rock is struck. Body of rock is slightly weakened.						
Moderately Weathered	Discoloration or oxida- tion extends from frac- tures usually throughout; Fe-Mg minerals are "rusty", feldspar crystals are "cloudy".	All fracture s are discolore oxidized.	urfaces d or	Partial separatior boundaries visible	Generally erals		ole min— may be ly leached.								
Intensely Weathered	Discoloration or oxidation throughout; all feldspars and Fe-Mg minerals are altered to clay to some extent; or chemical alteration produces in- situ disaggregation, see grain boundary conditions.		d or	Partial separatior is friable; in sem conditions graniti disaggregated.	Texture altered by Leaching of chemical soluble min- disintegration (hydration, argillation).		e min- pressure or by light hammer blow may be without reference to planes of			ir-					
Discolored or oxidized throughout, but resistant minerals such as quartz may be unaltered; all feldspars and Fe-Mg minerals are completely altered to clay.			Complete separation of grain boundaries (disaggregated).			Resembles a soil, partial or of complete remnant rock structure may be preserved; leaching of soluble minerals usually complete.		ock reserved;	Can be granulated by hand. Resistant minerals such as quartz may be present as "stringers" or "dikes".						
where characteristic	otors (such as "slightly we cs present are "in between o adjacent descriptors may	" the diagnostic i	eatures.	However, combination	n descrip	tors should not	be use	ed where sig	nificant,	identifiab	le zones c				
						Г			F	ROC	K LEO	GEN	D		
		-	JULIE F	PASSALACQUA		BRIDGE NO. 25-0128S		SILV	A VA	LLEY	EB OF	FF-R/	AMP U	C	
		CALIFORNIA TRANSPORTATIO	PROJEC	T ENGINEER		POST MILE R1.65		LO	G OF	TEST	BORI	NGS	4 OF 7	,	-


						PREP	ARED FOR	THE		BRIDGE NO.
DESIGN OVERSIGHT	DRAWN BY	M. ROBERTSON	R. PICKARD					JULIE PASSALACQUA	25-0128S	
			FIELD INVESTIGATION BY:		DEPARTMENT OF TRANSPORTATION			PROJECT ENGINEER	POST MILE	
SIGN OFF DATE	CHECKED BY	R. PICKARD	date: July 2010				SPORTATION		R1.65	
GS LOTB ROCK LEGEND SHEET 1 (ENGLISH) (REV. 7/16/10)				ORIGINAL SCALE IN INCHES FOR REDUCED PLANS	0	1	2	3	UNIT: 03–1E2901 PROJECT NUMBER & PHASE: 0300000258	3
									FILE => \$REQUEST	

	ROCK HARDNESS
Description	Criteria
Extremely Hard	Specimen cannot be scratched with a pocket knife or sharp pick; can only be chipped with repeated heavy hammer blows.
Very Hard	Specimen cannot be scratched with a pocket knife or sharp pick. Breaks with repeated heavy hammer blows.
Hard	Specimen can be scratched with a pocket knife or sharp pick with difficulty (heavy pressure). Heavy hammer blows required to break specimen.
Moderately Hard	Specimen can be scratched with a pocket knife or sharp pick with light or moderate pressure. Core breaks with moderate hammer pressure.
Moderately Soft	Specimen can be grooved 1/16" deep with a pocket knife or sharp pick with moderate or heavy pressure. Breaks with light hammer blow or heavy manual pressure.
Soft	Specimen can be grooved or gouged easily by a pocket knife or sharp pick with light pressure, can be scratched with fingernail. Breaks with light to moderate manual pressure.
Very Soft	Specimen can be readily indented, grooved or gouged with fingernail, or carved with a pocket knife. Breaks with light manual pressure.


Observed Fracture Density n 3 feet. 3 feet with few lengths less than 1 foot or " to 1 foot range with most lengths about 8"
3 feet with few lengths less than 1 foot or
3 feet with few lengths less than 1 foot or
" to 1 fact range with most lengths about 8"
to i loot lange with most lengths about o
m 1" to 4" with scattered fragmented intervals an 4 in.
igments with a few scattered short core lengths.

as in accordance with the	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS
tion, and Presentation Manual 4 of 5 "Soil Legend" and Log of	03	ED	50	0.0-2.9	447	451
ormed in accordance with ASTM mer operated with cat—head, rope s were 1 5/8—inch diameter s liners. =2.9 inch. Driven in same manner rass liners. 1e number of blows shown is for "seating drive" interval penetrated.		NS APPROV	LIJOF NEERING GEOLO		Villiam <u>Nichols</u> 2229 1-31-1	$\left(\frac{1}{0}\right)_{x_{1}}$
being performed, the soil based solely on the visual & Rock Logging, Classification,	shall	not be respons	ia or its officers ible for the accur tronic copies of t	or agents racy or	ED ENGINEERIN COLOGIST DF CALLFO	
is shown graphically on the ("N") represent the "standard dance with the Caltrans Soil & Manual (June 2007). ion is achieved, the blow count lard penetration resistance"	243 WES	7 FRONT ST	TO, CA 9569	3247 RAMOS CI	RCLE	
ere estimated. Is in the borings indicated on the uid level in the borings on the						
subject to seasonal fluctuations tions depending on the conditions						
view provided by Quincy						
7. rans "Standard Specifications". ce with the Caltrans Soil & Rock Manual.	ilt Log of ate of Ca ate expir	Test Borings sh ilifornia registrati ation date confi	eet is considered o on seal with signat m that this is a tr	in informational document on ure, license number and regi ue and accurate copy of the alidity of the information resented only for the conven	ly. As such stration : original	h,
docum original bidder.	ent. It do docume contract	es not attest to nt. This drawing or or other inter	the accuracy or v is available and p ested party.	validity of the information con resented only for the conven	ience of any	ne V
DIST. 03	COUNTY ED	ROUTE P 50	0ST MILES-TOTAL I 1.07/R2.4	PROJECT SHEET NO.	total shee 349	TS
	$\overline{\mathcal{A}}$		^			-
	IFIED ENG			D5/16/12		
		SILVA V	ALLEY EB C	OFF-RAMP UC		
rofile along	A COPY O	THIS LOG OF TES FICE OF STRUCTUR NS, SACRAMENTO,		RINGS 5 OF 7	3–1E2901	_
			of Test Borings	ROJECT NUMBER & PHASE: 03 BRIDGE NO. SH	30000025 IEET OF	8
st 2007. — are the	e additio	on of the follo	wing table and	notes 25-01285	19 21	
				152	PATRICK FISCHEF 1739	200151
				690	CERTIFIED NGINEERING GEOLOGIST OF CALLFORM	
				ب ۵		
				680 [.]		
				<u> </u>		
				<u>670</u> ^z		
				_ _		
				660 [–]		
				>		
				ш 		
				<u>650</u>		
				640		
				PROF	ΊLF	
				HOR. 1"= VERT. 1"	=10'	
	/ILL	e UNI	DERCR	OSSING (\	NIDE	EN)
66 LOG	OF	TES	T BOF	RINGS 1	of 5	
RD PRINTS BEARING REVISION DATES	22/08		REVISIO	N DATES	SHEET 14	г <u>о</u> ғ 18
, ,	· ·				_	-

rdance with the	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET TOTAL No SHEETS					
Presentation Manual bil Legend" and Log of accordance with ASTM	03	ED A <i>Frii</i> t	50 1	0.0-2.9	448 451					
ed with cat-head, rope 6/8-inch diameter		IFIED ENGINEE	RING GEOLOGIST		William					
Driven in same manner				No.	<u>2229</u>					
of blows shown is for ive" interval penetrated.		NS APPROV		certa	5.1-31-10					
ormed, the soil ly on the visual ogging, Classification,	the visual Classification, The State of California or its officers or agents shall not be responsible for the accuracy or completeness of electronic copies of this plan sheet.									
phically on the int the "standard BLACKBURN CONSULTING QUINCY ENGINEERING ne Caltrans Soil & 2437 FRONT STREET 3247 RAMOS CIRCLE e 2007). WEST SACRAMENTO, CA 95691 SACRAMENTO, CA 95827-250										
eved, the blow count ation resistance"	<u> </u>	e No. 1072	.2							
ted. orings indicated on the the borings on the	As Dulla Las af	Freed Designed abo		i-f	the de such 1					
seasonal fluctuations nding on the conditions	As-Bullt Log of the State of Cali certificate expirat document. It doe	fornia registration ion date confirm s not attest to	t is considered an seal with signatur that this is a true the accuracy or yel	informational document of e, license number and reg e and accurate copy of the idity of the information co	ny. As such, istration e original ntained in the					
ided by Quincy	document. It does not attest to the accuracy or validity of the information contained in the by Quincy bidder, contractor or other interested party.									
with plans in dard Specifications".										
e Caltrans Soil & Rock	Pata	- 1.		-						
			ST	5/16/12 date						
				F-RAMP UC NGS 6 OF 7						
	NOTE: A COPY OF AVAILABLE AT OFFI AND INVESTIGATION				3–1E2901 300000258					
	Revisions shown	on this Log		BRIDGE NO. S	HEET OF 20 21					
				·						
Approximate groundline profile along centerline of proposed bridge per Preliminary "General Plan" provided by Quincy Engineering, August 2007.										
				700	OF CALLFORMA					
ense), brown, dry, about	45% fine to	coarse GRA	VEL,	100						
about 30% fines (FILL). ght brown, dry, about 35 .0-5.5ft. depth.				690						
o medium dense, brown, ines (FILL).	dry to moist	, about 60	% fine	t t						
CL), (stiff), brown, dry, a	bout 25% fine	e to coarse	SAND,	680						
decomposed, soft, very	intensely frac	tured, dry.		<u> </u>						
ensely weathered.	11			0=0 -						
weathered, some partly h		es.		670 ^z						
eathered, moderately hard	ιο			- - -						
				660 [–]						
				>						
				ш 						
				650 📖						
				0.40						
				640						
				PRO	FILE					
				HOR. 1 VERT. 1						
				OSSING (
	DG OF	TES	T BOF	RINGS 2	of 5					
RD PRINTS BEARING REVISION DATES	- 04/22/08		REVISIO	N DATES	SHEET OF 15 18					
		I								

	1)) -)	ED-50	PER. ROAD DIV. Ro.	STATE F	A PROJECT Ne.	SHEET TOTAL	
			,			Constra Con Co	6, 1364	
άs−Built Log of Τ	est Borings	sheet is considered	d an informational	document o	nlv. As su	cb		
bidder, contractor	or other in OUTE	ng is available and terested party. POST MILES-TOTA		SHEET NO.	TOTAL SHE	ny		
CERTIFIED ENGINE	SILVA LOG OF HIS LOG OF T E OF STRUCT SACRAMENT	VALLEY EB DF TEST BC TEST BORINGS IS URE MAINTENANCE O, CALIFORNIA.	05/16/12 DATE OFF-RAMP DRINGS 7 O UNIT: PROJECT NUMBER	F 7 0 & PHASE: 0			- - 	
Revisions shown are the addition	of the fo	ng of rest born		11285	21 2 NONAL GE PATRICK FISCHE 1739	21 Qr QC 951 ER 3 G		
- 690								
		COMENT	ATION ON A GNS ENCOU DE GLOLOGY		13 01	DATION N FILE		
<u>680</u>			SET OF PLANS SPOND TO THE . AS			ed to S daten Sident		
						<u>Ген</u>	EET OF	
[DEPARTMENT		WORKS		12EET OF 2 9	
		CLA		E UN		ŔŎSŚIł	NG	
		LOC	GOFT	ESĩ			,/	
aisedmun 1		RAWING NO. PR	RIDGE 25-72 5	FILE	DR	AWING 25	7 <u>29</u>	,
Charles	L		1-763	(63)				

APPENDIX C

Laboratory Test Results


- Silva Valley Westbound On-Ramp UC
- Clarksville UC (Widen)

Laboratory Test Results

Silva Valley Westbound On-Ramp UC

	Laboratory Testing Summary											
										Corro	sivity	
					Moisture	Dry	Moisture	Unconfined				
Exploration		Depth	Sample	USCS	Content	Density,	Content	Compression		Resistivity	Chloride	Sulfate
I.D.	Sample No.	(feet)	Туре	Classification	(%)	γ_{dry} (pcf)	(%)	(psi)	pН	(ohm-cm)	(ppm)	(ppm)
R-10-004	S1	1.0-1.5	MC	CL	14.7	97	15					
R-10-004	S2	5.0-6.5	MC	Decomp Rock					7.1	1420	17.0	67.5

Sunland Analytical 11353 Pyrites Way, Suite 4

Rancho Cordova, CA 95670 (916) 852-8557

> Date Reported 09/17/2010 Date Submitted 09/14/2010

To: Ken Colburn Blackburn Consulting 11521 Blocker Dr. Ste. 110 Auburn, CA 95603

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location : SILVA VLY PKWY INTER Site ID : R-10-004-S2B. Thank you for your business.

* For future reference to this analysis please use SUN # 58852-119538.

EVALUATION FOR SOIL CORROSION

Soil pH	7.08			
Minimum Resistiv	ity 1.42	ohm-cm	(x1000)	
Chloride	17.0 pj	pm	00.00170	%
Sulfate	67.5 pj	pm	00.00675	8

METHODS

pH and Min.Resistivity CA DOT Test #643 Sulfate CA DOT Test #417, Chloride CA DOT Test #422

Laboratory Test Results

Clarksville UC (Widen)

Project Name: Clarksville UC, El Dorado County, CA BCI File No: 1072.1.A1.2 Date: 7/26/2007

MHW

Technician:

MOISTURE-DENSITY TESTS

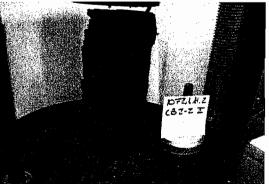
Sample No.	R-07-B2/1II	R-07-B2/4III	A-07-B3/1III	A-07-B3/2III			
Depth (ft.)	5.5-6.0	20.0-20.25	6.0-6.5	11.0-11.5			
Sample Length (in.)	5.80	5.03	5.74	5.54			
Diameter (in.)	2.43	2.40	2.40	2.43			
Sample Volume (ft ³)	0.01557	0.01317	0.01503	0.01487			
Tare No.	L	G	К	NN			
Tare (g)	191.7	198.7	212.9	104.3			
Wet Soil + Tare (g)	1144.8	918.7	1230.6	885.9	·		
Dry Soil + Tare (g)	1054.7	830.2	1124.4	829.6			
Dry Soil Weight (g)	863.1	631.5	911.5	725.3			
Water (g)	90.1	88.6	106.2	56.3			
Moisture (%)	10.4	14.0	11.7	7.8			
Dry Density (pcf)	122.2	105.7	133.7	107.5			
Sample:	R-07-B2/1II		Description:	Olive brown silty	sand to strong	g brown claye	ey silt
				(decomposed and	l weathered ro	ck)	
Moisture (Appearance):	moist		Consister	ncy/Cementation:			
Sample:	R-07-B2/4III		Description:	Dark yellowish b			
	• ,		0	(decomposed and	l weathered ro	ck)	
Moisture (Appearance):	moist			ncy/Cementation:	1		
Sample:	A-07-B3/1III		Description:	Strong brown cla (decomposed and		alc)	
Moisture (Appearance):	moist		Consister	cy/Cementation:	weathered 10		
Sample:	A-07-B3/2III			Very dark greenis	sh gray weathe	red rock and	dark
1			•	olive brown silty			
Moisture (Appearance):	moist		Consister	ncy/Cementation:			
Sample:			Description:				
Moisture (Appearance):			Consister	ncy/Cementation:			
Sample:			Description:				
			•				
	moist			ncy/Cementation:			
Sample:			Description:			•	
Moisture (Appearance):			, Consister	ncy/Cementation:			
Dismoster = 1.441 for 1.5 ;							

Diameter = 1.44" for 1.5-inch Tubes Diameter = 1.938" for 2-inch Tubes

Diameter = 2.438" for 2.5-inch Tubes

Diameter= 2.850" for 3.0-inch Shelby Tubes

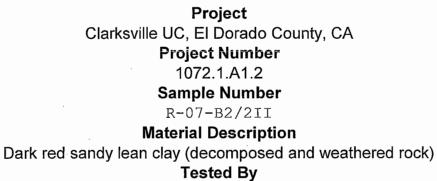
Unconfined Compression Test Lab Sheet ASTM D 2166-00

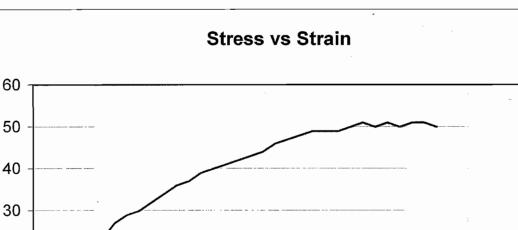

	Project Name	Clarksville UC, El Dorado County, CA				
	Project Number	1072.1.A1.2				
	Sample	R-07-B2/2II	Depth	10.5-11.0 ft		
[Sample Description	Dark red sandy	ean clay (deo	composed and w	veathered rock)	
	Date	7/26/2007		_		
	Tested By:	MHW				
	Original Sample Length	5.97				
	Original Diameter (in)	2.45			axial strain	
	Sample Area (in ²)	4.71	Avera	ge cross-section	nal area (in²)	

axial strain	4.5%
Average cross-sectional area (in ²)	4.94
Average cross-sectional area (ft ²)	0.034
Peak Reading	0.630
Maximum Load(lb)	51
Compressive Strength (tsf)	0.74

Moisture Density

	Wet Sample Weight (g)	1158.7
	Tare Number	С
	Tare Weight (g)	199.5
ĺ	Dry Sample Weight (g)	1047.3
	Dry Weight (g)	847.8
	Water Weight (g)	111.4
	Percent Moisture (%)	13.1
	Wet Density (pcf)	129.8
Į	Dry Density (pcf)	114.8


Remarks: * moisture taken after test


Compression Tests

Dial reading @ 0 lb 0.900

Unconfined Compression Test Readings							
Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb
0.890	4	0.730	42	0.570	50		
0.880	7	0.720	43				
0.870	10	0.710	44				
0.860	13	0.700	46				
0.850	18	0.690	47				
0.840	23	0.680	48				
0.830	27	0.670	49				
0.820	29	0.660	49				
0.810	30	0.650	49				
0.800	32	0.640	50				
0.790	34	0.630	51				
0.780	36	0.620	50				
0.770	37	0.610	51				
0.760	39	0.600	50				
0.750	40	0.590	51				
0.740	· 41	0.580	51				

MHW

Stress (load-lb)

20

10

0

0.01

ASTM D 2166-00

Wet Density (pcf)	129.8
Dry Density (pcf)	114.8
% Moisture	13.1

0.23

Axial Strain (in/in)

0.34

1.00

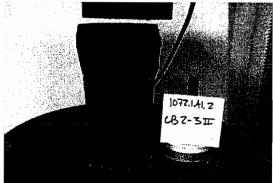
Unconfined Compressive Strength (tsf) 0.74

0.12

Unconfined Compression Test Lab Sheet ASTM D 2166-00

Project Name	Clarksville UC, El Dorado County, CA			
Project Number	1072.1.A <u>1.2</u>			
Sample	R-07-B2/3II	Depth	15.5-16.0 ft	
Sample Description	Dark brown lean clay with sand			
Date	7/26/2007			
Tested By:	MHW			

Original Sample Length	5.29
Original Diameter (in)	2.40
Sample Area (in ²)	4.52


10.8% axial strain Average cross-sectional area (in²) 5.07 Average cross-sectional area (ft²) 0.035 Peak Reading 0.330 Maximum Load(lb) 32 Compressive Strength (tsf) 0.45

Wet Sample Weight (g) 919.3

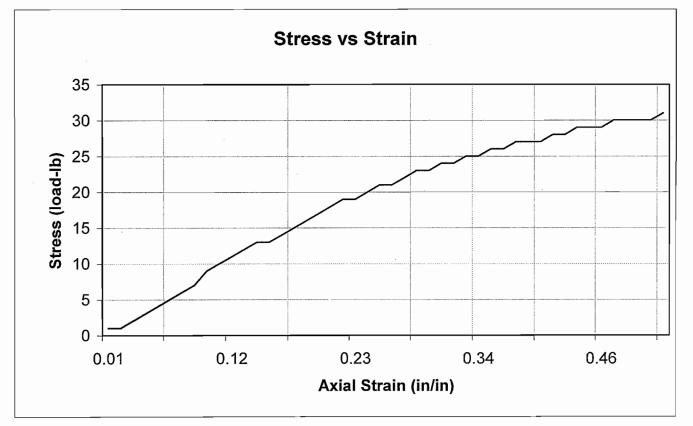
0.900

Tare Number	QQ
Tare Weight (g)	104.9
Dry Sample Weight (g)	782.0
Dry Weight (g)	677.2
Water Weight (g)	137.3
Percent Moisture (%)	20.3
Wet Density (pcf)	129.6
Dry Density (pcf)	107.8

Remarks: * moisture taken after test

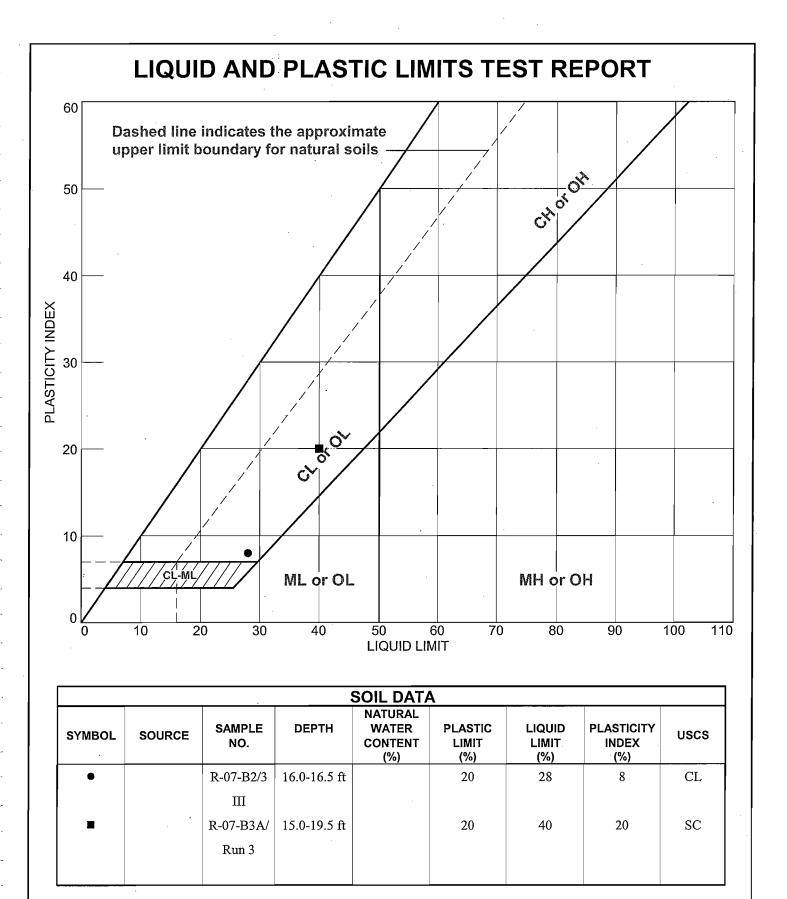
Compression Tests

Moisture Density

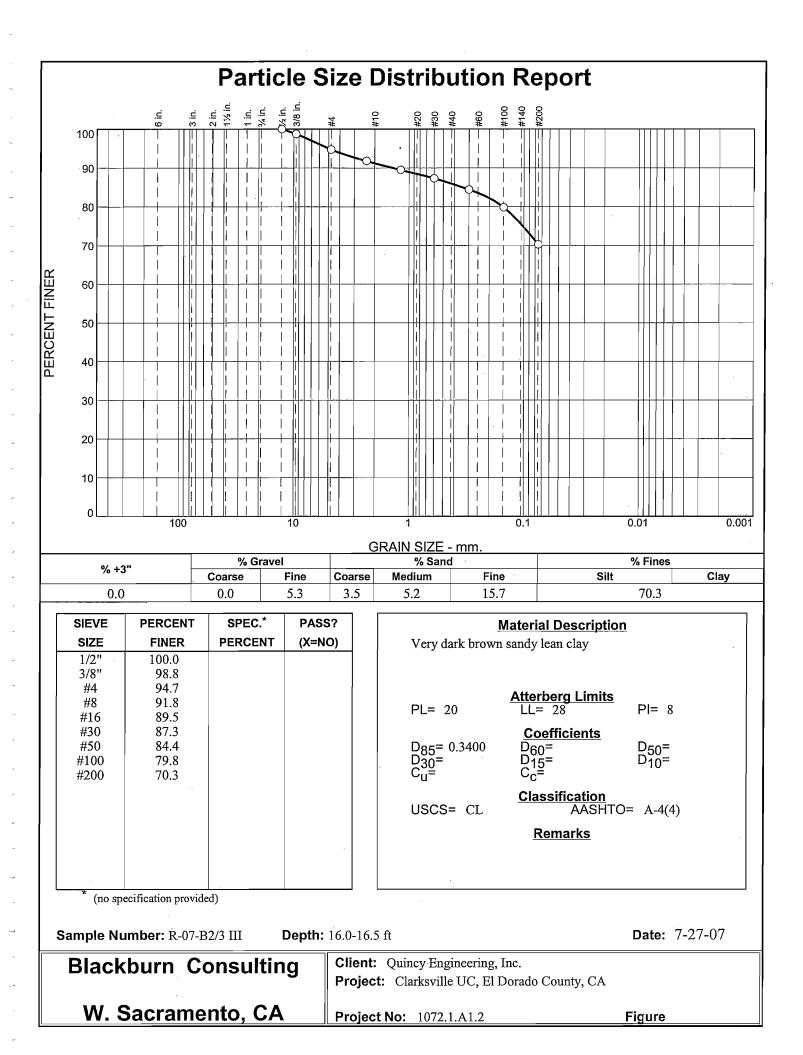

Dial reading @ 0 lb

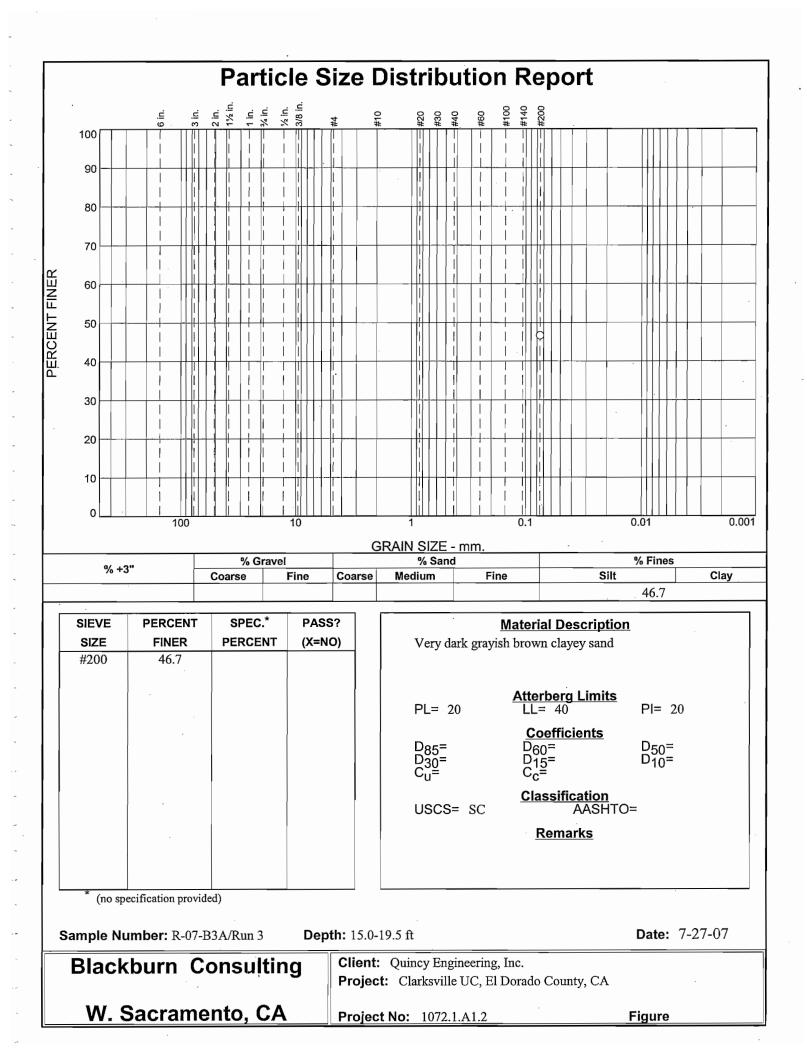
Unconfined Compression Test Readings									
Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb ·		
0.890	1	0.730	16	0.570	26	0.410	31		
0.880	1	0.720	17	0.560	27	0.400	31		
0.870	2	0.710	18	0.550	27	0.390	[`] 31		
0.860	3	0.700	19	0.540	27	0.380	31		
0.850	4	0.690	19	0.530	28	0.370	31		
0.840	5	0.680	20	0.520	28	0.360	31		
0.830	6	0.670	21	0.510	29	0.350	31		
0.820	7	0.660	21	0.500	29	0.340	31		
0.810	9	0.650	22	0.490	29	0.330	32		
0.800	10	0.640	23	0.480	30	0.320	32		
0.790	11	0.630	23	0.470	30	0.310	32		
0.780	12	0.620	24	0.460	30	0.300	32		
0.770	13	0.610	24	0.450	30	0.290	32		
0.760	13	0.600	25	0.440	31	0.280	32		
0.750	14	0.590	25	0.430	31	0.270	32		
0.740	15	0.580	26	0.420	31	0.260	32		

Project Clarksville UC, El Dorado County, CA Project Number 1072.1.A1.2 Sample Number R-07-B2/3II Material Description Dark brown lean clay with sand


Tested By MHW

ASTM D 2166-00




Wet Density (pcf)	129.6
Dry Density (pcf)	107.8
% Moisture	20.3

Unconfined Compressive Strength (tsf) 0.45

Blackburn Consulting	Client: Quincy Engineering, Inc.	
	Project: Clarksville UC, El Dorado County, CA	
W. Sacramento, CA	Project No.: 1072.1.A1.2	Figure

2437 Front Street West Sacramento, CA 95691 Phone: 916.375.8706 Fax: 916.375.8709

Project: Clarksville UC (Widen) File No.: 1072.1

UNCONFINED COMPRESSIVE STRENGTH TEST REPORT

ASTM D 2938-95

Sample ID	Description	Length (inches) ³	Dia. (inches)	Area (in²)	Moisture (%)	Temp. (°f)	Max Load (psf) ²	Strength (tsf)
R-07-B1/Run 3 (12.3-15.6)	Metavolcanic Rock, gray green, slightly weathered, very hard, very intensely fractured	5.07	2.38	4.45	n/a	75	35704	575.9

Before Test

After Test

Sample ID	Description	Length (inches) ³	Dia. (inches)	Area (in²)	Moisture (%)	Temp. (°f)	Max Load (psf) ²	Strength (tsf)
 07-B1/Run 5 3.1-20.6)	Metavolcanic Rock, gray green, slightly weathered to fresh, very hard, very intensely fractured	5.00	2.38	4.45	n/a	75	8251	133.1

Before Test

NOTES:

1. Rate of Strain=0.50in./inch using a Humboldt "Master Loader", 10,000 lb. maximum capacity.

2. Rate of Strain=10,000lbs./min. using a Forney Press, 100,000 lb. capacity.

3. Cores cut using a wet saw with a diamond blade.

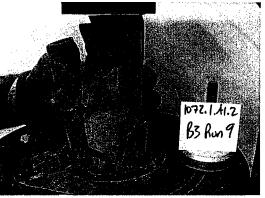
2437 Front Street West Sacramento, CA 95691 Phone: 916.375.8706 Fax: 916.375.8709

Project: Clarksville UC (Widen) File No.: 1072.1

UNCONFINED COMPRESSIVE STRENGTH TEST REPORT

ASTM D 2938-95

Sample ID	Description	Length (inches) ³	Dia. (inches)	Area (in²)	Moisture (%)	Temp. (°f)	Max Load (psf) ¹	Strength (tsf)
R-07-B3A/Run 7 (28.0-30.0)	Metavolcanic Rock, gray green, slightly weathered, hard, very intensely fractured	5.34	2.39	4.49	n/a	75	1531	24.7



NOTES: Sample sheared on fracture plane

Sample ID	Description	Length (inches) ³	Dia. (inches)	Area (in²)	Moisture (%)	Temp. (°f)	Max Load (psf) ¹	Strength (tsf)
R-07-B3A/Run 9 (32.5-35.5)	Metamorpic Rock, gray green, slightly weathered to fresh, hard, very intensely fractured	5.23	2.39	4.49	n/a	75	8800	141.9

NOTES:

1. Rate of Strain=0.50in./inch using a Humboldt "Master Loader", 10,000 lb. maximum capacity.

2. Rate of Strain=10,000lbs./min. using a Forney Press, 100,000 lb. capacity.

3. Cores cut using a wet saw with a diamond blade.

Sunland Analytical

11353 Pyrites Way, Suite 4 Rancho Cordova, CA 95670 (916) 852-8557

Date Reported 08/01/2007 Date Submitted 07/25/2007

To: Nikki Hart Blackburn Consulting 2437 Front Street West Sacramento, CA 95691

死

\$

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : LATRODE/CLARKSVL UC Site ID : B2-3 III. Thank you for your business.

* For future reference to this analysis please use SUN # 51268-102390. EVALUATION FOR SOIL CORROSION

 Minimum Resistivity
 2.68 ohm-cm (x1000)

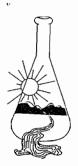
 Chloride
 9.1 ppm
 00.00091 %

 Sulfate
 17.0 ppm
 00.00170 %

6.02

METHODS

ş


Soal pH

pH and Min.Resistivity CA DOT Test #643 Sulfate CA DOT Test #417, Chloride CA DOT Test #422

1

Sunland Analytical

11353 Pyrites Way, Suite 4 Rancho Cordova, CA 95670 (916) 852-8557

 Date Reported
 08/01/2007

 Date Submitted
 07/25/2007

To: Nikki Hart Blackburn Consulting 2437 Front Street West Sacramento, CA 95691

劳

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : LATRODE/CLARKSVL UC Site ID : B3A RUN 3. Thank you for your business.

* For future reference to this analysis please use SUN # 51268-102391. EVALUATION FOR SOIL CORROSION

 Soid pH
 6.49

 Minimum Resistivity
 0.80 ohm-cm (x1000)

 Chloride
 9.8 ppm
 00.00098 %

 Sulfate
 274.6 ppm
 00.02746 %

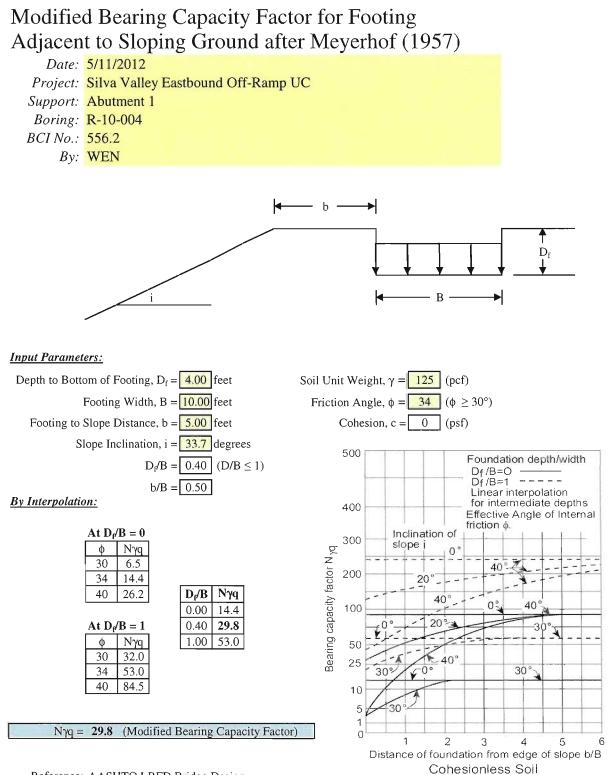
METHODS

÷

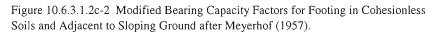
Ę,

pH and Min.Resistivity CA DOT Test #643 Sulfate CA DOT Test #417, Chloride CA DOT Test #422

APPENDIX D


Design Calculations

- Allowable Bearing Capacity and Settlement
- Elastic Constants of Various Soils
- Slope Stability Output Graphs
- Lateral Earth Pressure



Design Calculations

Allowable Bearing Capacity and Settlement

Allowable Bearing and Immediate Settlement Worksheet (WSD)

	astbound Off-R	amp UC				Abutment 1 R-10-004					
LRFD	Service Limit State	e I Vertical	Load (kips):	1810							
			th, B' _f (feet): th, L' _f (feet):	10,00 44.00							
	Effective P	Joung Leng		44.00							
	Ground S	Surface Ele	vation (feet):	685.5	(equal to footi	ing bottom for	a footing in fill	above ex.	grnd. sur	face)	
			vation (feet):	672,0							
	Depth		Water (feet):	13.5							
			poting (feet):	0.0	(for	settlement ana	lysis)				
		Time to Se	ettlement (t):	1.2							
	Bottom F	Footing Ele	vation (feet):	685.5							
		0	()		I						
			Grade (feet);	689.5							
	Depth		Water (feet):	17.5	(for bea	ring resistance	analysis)				
		Depth of fo	ooting (feet):	4.0	(101 011						
			$\gamma(pcf) =$	125	Soil Parameter	rs at base of					
		¢	(degrees) =	34	footing						
		~	c (psf) =	0]				
		Facto	or of Safety =	3.0							
		Dopth				Soil					
	Material	Depth Bottom	Layer	Тор	Bottom	Unit	Soil	N1 ₆₀		or	Estimated
Layer	Description	Layer	Thickness	Elev.	Elev.	Weight	Туре	11160	Es	01	Es
Layer	Description	(feet)	(feet)	(feet)	(feet)	(pcf)	(1, 2, 3, or 4)		(tsf)		(tsf)
1	Eng. Fill	13.5	13.5	685.5	672.0	125	3	16	160		
2	Residual Soil	19.5	6.0	672.0	666.0	115	1	29	116		
3	Int. Wthd Rock	25.5	6.0	666.0	660.0	125	3	65	650		
4	Wthd Rock	100.0	74.5	660.0	585.5	130	4			and in	2000
5										1	
6		_								120	
7		_						_		-	
8										-	
9	<u> 1976 - 1976 - 1</u>	77.55				-			<u> </u>	-	
10										141-2	
11									<u> </u>		-
12							Contraction of the local sector			1940-1	
13											
15										1000	
Soil Types											

2) Clean fine to medium sands and slightly silty sands

Ulimate	Allowable
Gross Bearing	Gross Bearing
Capacity	Capacity
\mathbf{q}_{ult}	Q ali
(ksf)	(ksf)
16.11	5.37

(ksf)	(ksf)		(ksf)	(ksf)	(inches)
16.11	5.37		4.11	4.11	1.35
P	ermissible Net	Permis	sible Gross	Immo	ediate
0	Contact Stress	Cont	act Stress	Settle	ement
	\mathbf{q}_{pn}		q _{pg}	9	Si
	(ksf)		(ksf)	(inc	hes)
	5.76		5.76	2.	00

3) Coarse sands and sands with little gravel 4) Sandy gravel and gravels

Immediate

Settlement

 S_i

Net

Bearing

Stress

q'。

Gross Uniform

Bearing Stress

 $\mathbf{q}_{\mathbf{o}}$

Sevice	Limi	t State
Settlem	ent (1.	0 inches)
	Check	¢.
qo		$\mathbf{q}_{\mathbf{pg}}$
(ksf)	<	(ksf)
4.11		5.76
	OKAY	ř

Sevice Limit State								
Bearing Capacity								
Check								
qo		q _{ali}						
(ksf)	<	(ksf)						
4.11		5.37						
ŌKAY								

References

1) Caltrans, Memo To Designers 4-1 Spread Footings, April 2008.

2) Nominal Bearing Resistance Equation (10.6.3.1.2a-1) Modified for Footing Near Slope, AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007.

3) Schmertmann's Modified Method for Calculation of Immediate Settlements (1978), Soils and Foundations - Volume II, FHWA NHI-06-089, December 2006.

4) Elastic Constants of Various Soils (Table C10.4.6.3-1) AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007.

Soil Types
1) Silts, sandy silts, slightly cohesive mixtures

BEARING CAPACITY for FOOTING LOCATED ADJACENT to SLOPING GROUND

STRENGTH LIMIT STATE (AASHTO Bridge Design Specifications)

Date: 5/11/2012 Project: Silva Valley Eastbound Off-Ramp UC BCI No: 556.2

Equation: $q_n = cN_{cqm} + 0.5 \gamma BN_{\gamma qm} C_{w\gamma}$

in which:

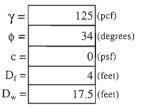
$$N_{cqm} = N_{cq} s_c i_c$$
$$N_{\gamma qm} = N_{\gamma q} s_{\gamma} i_{\gamma}$$

 D_w $C_{\underline{w\gamma}}$ 0 0.5 D_{f} 0.5

 $>1.5B+D_{f}$

 N_{cq} and $N_{\gamma q}$ = modified bearing capacity factors

 s_c and s_{γ} = footing shape correction factors


Support: Abutment 1

Boring: R-10-004

where:

- q_n = nominal bearing resistance
 - c = cohesion (psf)
 - B' = effective footing width (feet)
 - i_c and i_{γ} = load inclination factors γ = total (moist) unit weight of soil (pcf)
- D_f = footing embedment depth (feet)

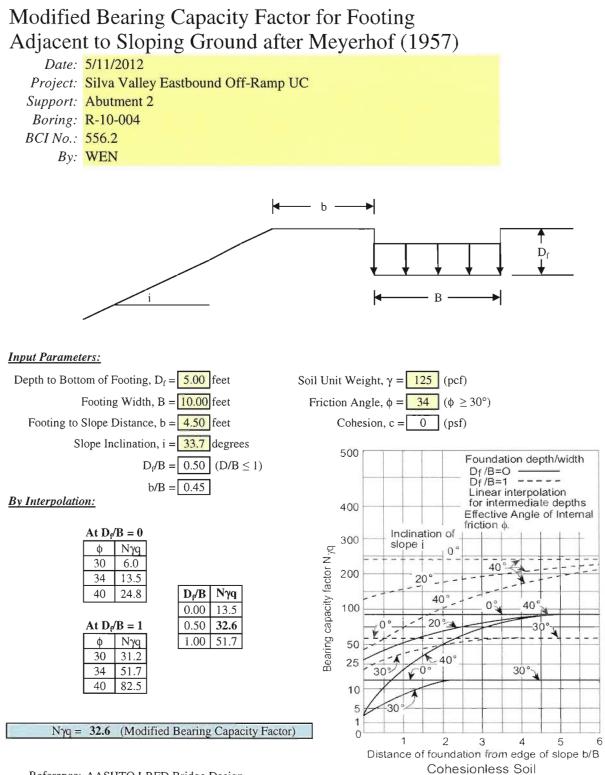
Input Parameters

Bottom Footing Elevation (feet):	685.5
Finished Grade (feet):	689.5
Ground Water Elevation (feet):	672.0

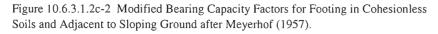
1.0

 $C_{w\gamma}$ = correction factors for location of ground water

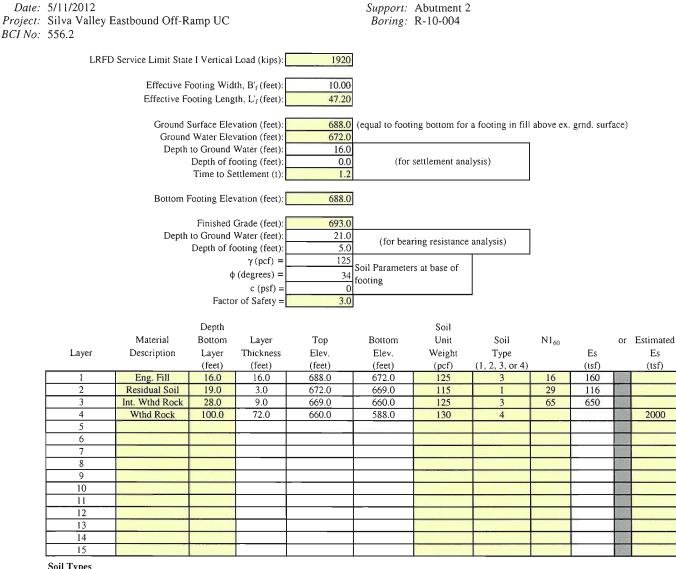
 D_w = depth to ground water taken from the ground surface (feet)


									Stre	ngth Limit	State
Solve for Ult	imate Gross B	earing C	<u>Capacity</u>								
Effe	ctive] U	limate Gros	s	Al	lowable Gr	ross
Footing D	imensions		C	6		Be	aring Capac	ity	Bea	aring Capa	ncity
B'	L'		C _{wγ}	s _c	Sγ				Facto	of Safety =	3.0
(fe	eet)					(psf)	(ksf)	(tsf)	(psf)	(ksf)	(tsf)
10.0	44.0		0.95	1.00	0.91	16108	16.11	8.1	5369	5.37	2.7
	Modified	Bearing	Canacit	v Factor	s	Shape Corre	ection Factor	·s			

 $N_{cq} = |NA|$ $N_{\gamma q} = 29.8$


φ	s _c	sγ
$\phi = 0$	1 + (B/5L)	1.0
φ > 0	1	1 - 0.4(B/L)

Notes: If L > 5B, then s_c and $s_{\gamma} = 1.0$ (Geotechnical Engineering Circular No. 6, FHWA-SA-02-054, pgs 55-56)


Nyq determined from Figure 10.6.3.1.2c-2, AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007.

Allowable Bearing and Immediate Settlement Worksheet (WSD)

Soil Types

1) Silts, sandy silts, slightly cohesive mixtures

2) Clean fine to medium sands and slightly silty sands

Ulimate	Allowable	Gross	Net
Gross Bearing	Gross Bearing	Uniform	Bearing
Capacity	Capacity	Bearing Stress	Stress
Qult	Q _{all}	\mathbf{q}_{o}	q'.
(ksf)	(ksf)	(ksf)	(ksf)
18.66	6.22	4.07	4.07

Permissible Net	Permissible Gross	Immediate
Contact Stress	Contact Stress	Settlement
q _{pn}	q _{pg}	S _i
(ksf)	(ksf)	(inches)
6.05	6.05	2.00

Sevice Limit State								
Settlement (1.0 inches)								
Check								
q		q _{pg}						
(ksf)	<	(ksf)						
4.07		6.05						
-	OKAY	Y						
	Settleme q _o (ksf) 4.07	Settlement (1. Checl q _o (ksf) <						

Sevice	e Limi	t State						
Beari	ng Ca	pacity						
	Check							
qo	զ, զ.,յ							
(ksf)	<	(ksf)						
4.07		6.22						
OKAY								

References

1) Caltrans, Memo To Designers 4-1 Spread Footings, April 2008.

2) Nominal Bearing Resistance Equation (10.6.3.1.2a-1) Modified for Footing Near Slope, AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007.

3) Schmertmann's Modified Method for Calculation of Immediate Settlements (1978), Soils and Foundations - Volume II, FHWA NHI-06-089, December 2006.

4) Elastic Constants of Various Soils (Table C10.4.6.3-1) AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007.

3) Coarse sands and sands with little gravel

4) Sandy gravel and gravels

Immediate

Settlement

 S_i (inches) 1.26

BEARING CAPACITY for FOOTING LOCATED ADJACENT to SLOPING GROUND

STRENGTH LIMIT STATE (AASHTO Bridge Design Specifications)

Date: 5/11/2012 Project: Silva Valley Eastbound Off-Ramp UC BCI No: 556.2

Support: Abutment 2 Boring: R-10-004

Equation: $q_n = cN_{cqm} + 0.5 \gamma BN_{\gamma qm} C_{w\gamma}$

in which:

$$N_{cqm} = N_{cq} s_c i_c$$
$$N_{\gamma qm} = N_{\gamma q} s_{\gamma} i_{\gamma}$$

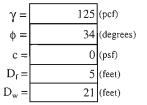
D _w	C _{wγ}
0	0.5
Dſ	0.5
>1.5B+D _f	1.0

where:

- q n = nominal bearing resistance
 - c = cohesion (psf)

 N_{cq} and $N_{\gamma q}$ = modified bearing capacity factors

- B' = effective footing width (feet)
- D_f = footing embedment depth (feet)


 $C_{w\gamma} =$ correction factors for location of ground water

- s_c and s_{γ} = footing shape correction factors
- $\gamma = \text{total (moist) unit weight of soil (pcf)}$

 i_c and i_{γ} = load inclination factors

 D_w = depth to ground water taken from the ground surface (feet)

Input Parameters

$i_c =$	1.0	
$i_{\gamma} =$	1.0	

Bottom Footing Elevation (feet):	688.0
Finished Grade (feet):	693.0
Ground Water Elevation (feet):	672.0

	_									Stren	gth Limit	State
Solve for Ult	imate Gross B	earing C	Capacity									
Effe	ctive				-		ι	Jlimate Gros	SS	Alle	owable Gr	oss
Footing D	imensions		C _{wγ}	S _c	5			Bearing Capacity		ring Capa	city	
B'	L'		Cwγ	50	Sγ					Factor	of Safety =	3.0
(fe	eet)						(psf)	(ksf)	(tsf)	(psf)	(ksf)	(tsf)
10.0	47.2		1.00	1.00	0.92		18665	18.66	9.3	6222	6.22	3.1
			<u> </u>	~			~ ~					

Modified Bearing Capacity Factors ЪT NY A

$N_{cq} =$	NA	
N _{γq} =	32.6	

Shape Correction Factors

φ	s _c	sγ
$\phi = 0$	1 + (B/5L)	1.0
φ > 0	1	1 - 0.4(B/L)

Notes: If L > 5B, then s_c and $s_{\gamma} = 1.0$ (Geotechnical Engineering Circular No. 6, FHWA-SA-02-054, pgs 55-56)

Nyq determined from Figure 10.6.3.1.2c-2, AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007.

Design Calculations

Elastic Constants of Various Soils

ELASTIC CONSTANTS OF VARIOUS SOILS (after AASHTO LRFD BDS)

	Typical Range of Values				
		Poisson's			
Soil Type	Young's Modulus, Es	Ratio, v			
	(tsf)	(dim)			
Clay:					
Soft sensitive	25-150				
Medium stiff	150-500	0.4-0.5			
to stiff		(undrained)			
Very stiff	500-1000				
Loess	150-600	0.1-0.3			
Silt	20-200	0.3-0.35			
Fine sand:					
Loose	80-120				
Medium dense	120-200	0.25			
Dense	200-300				
Sand:					
Loose	100-300	0.2-0.35			
Medium dense	300-500				
Dense	500-800	0.3-0.4			
Gravel:					
Loose	300-800	0.2-0.35			
Medium dense	800-1000				
Dense	1000-2000	0.3-0.4			
Estimating Es from SPT N-value (N1 ₆₀) ⁽¹⁾					
Soil Type		Young's Modulus, Es			
		(tsf)			
1) Silts, sandy silts, sl	ightly cohesive mixtures	4N1 ₆₀			
2) Clean fine to media	im sands and slightly silty sands	7N1 ₆₀			
3) Coarse sands and s	ands with little gravel	10N1 ₆₀			
4) Sandy gravel and g	ravels	12N1 ₆₀			

ELASTIC CONSTANTS OF VARIOUS SOILS MODIFIED AFTER US DEPARTMENT OF THE NAVY (1982) AND BOWLES (1982)

Estimating Es from $S_u^{(2)}$

Soil Type	Young's Modulus, Es
	(tsf)
Soft sensitive clay	200S _u -500S _u
Medium stiff to stiff clay	750S _u -1,200S _u
Very stiff clay	$1,500S_{u}-2,000S_{u}$

(1) $N1_{60}$ = SPT corrected for depth and overburden.

(2) $S_u =$ Undrained shear strength (tsf).

Sources: Typical Ranges of Values / Estimating Es from SPT N-value

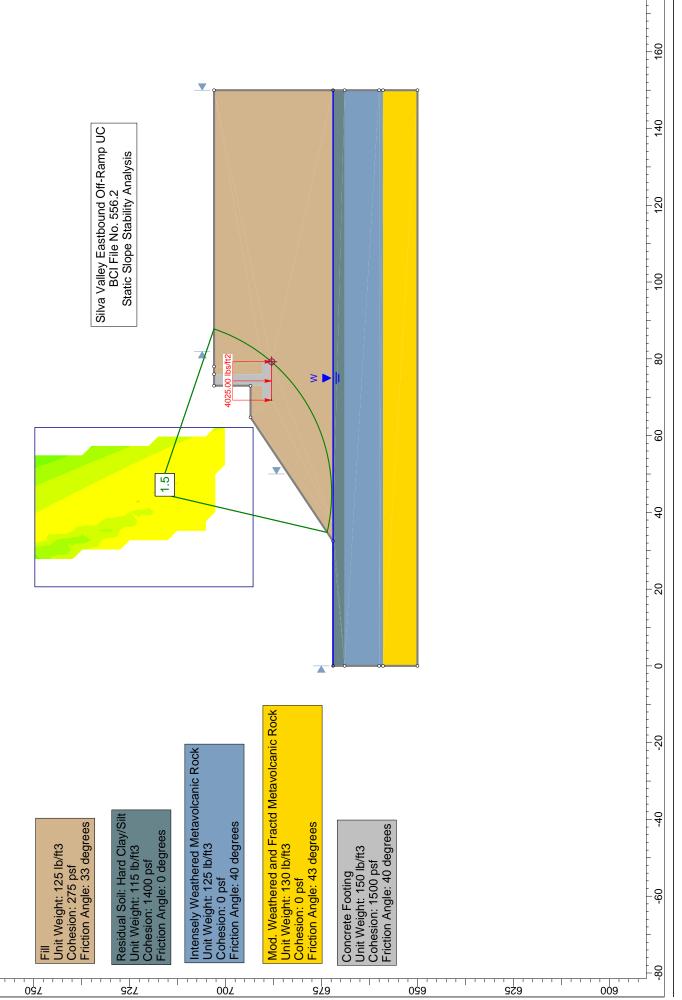
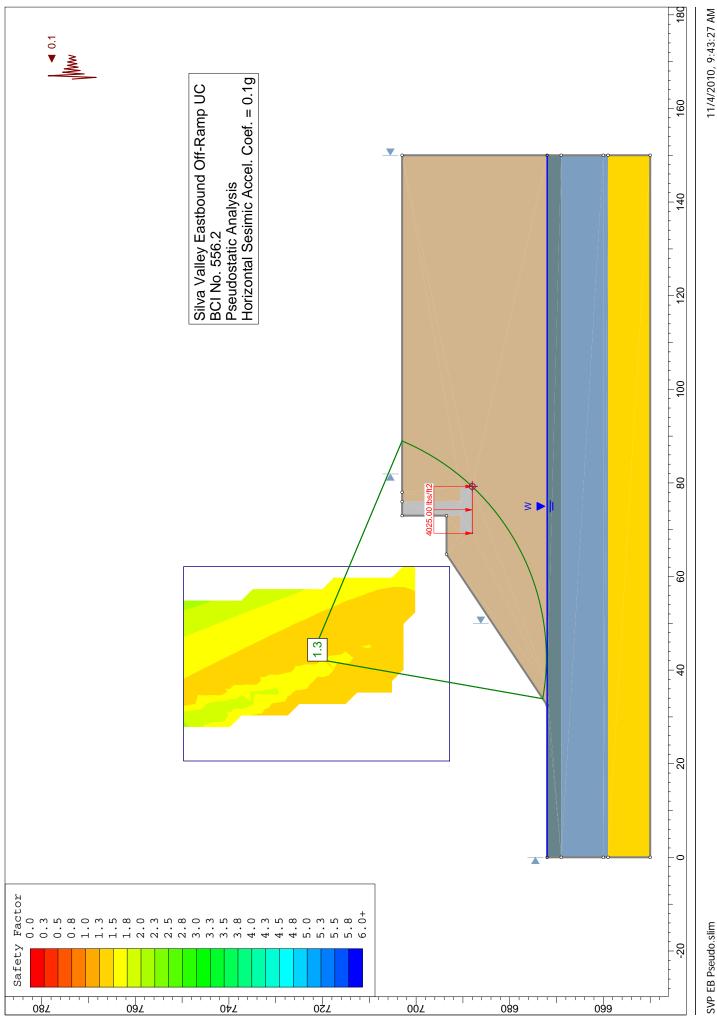

Table C10.4.6.3-1, AASHTO LRFD Bridge Design Specifications, 4th Edition.

Table 5-16, FHWA NHI-06-088, Soils and Foundations - Volume 1, December 2006. Estimating Es from S_u

Caltrans Bridge Design Specifications, November 2003.


Design Calculations

Slope Stability Output Graphs

11/4/2010, 9:43:27 AM

Static EB.slim

11/4/2010, 9:43:27 AM

Design Calculations

Lateral Earth Pressure

EQUIVALENT FLUID WEIGHTS (EFWs)

Project: Silva Valley EB On-Ramp UC / WB Off-Ramp UC BCI No.: 556.2

Date: 2/27/2012 By: WEN

EFWs for static condition determined using equations in; Naval Facilities (NAVFAC) Design Manual 7.2 for active (K_A) and passive (K_P) lateral coefficients; and USACE Retaining and Floodwalls Manual (EM 1110-2-2502) for at-rest (K_0) lateral coefficient. EFWs for scismic loading conditions determined using the Mononobe-Okabe equation for active and passive lateral coefficients K_{AE} and K_{PE} .

Unit wieght of soil (pcf), 120.0 γ = Internal friction angle of soil (degrees), (<45°) φ = 33.0 Inclination of wall with respect to vertical (degrees), 0.0 β = Wall friction angle (degrees), 22.0 $(\delta = 2\phi/3)$ δ = Inclination of soil surface above wall (degrees). i = 0.0 Peak Ground Acceleration (g), PGA = 0.21 Horizontal seismic acceleration coefficient, k_h = 0.11 Vertical seismic acceleration coefficient. 0.00 k, = Lateral wall displacement (inches), $1.00 \quad (1 \le d \le 8)$ d =

		Facto	r of Safe	ty	
$EFW = K\gamma$	EFW	1.0	1.5	2.0	
	Active	36			psf/f
	Passive	407	271	203	psf/f
	At rest	55			psf/f
	ActiveEQ	4			psf/f
•	Passive _{EQ}	383	255	191	psf/f
	At rest _{EQ}	7			psf/f

K∧ =	0.29
K _P =	3.39
K _O =	0.46
$K_{AE} =$	0.33
$K_{PE} =$	3.19

Note: ActiveEQ and At restEQ EFWs are additional to static Active and At rest EFWs.

Static Loading

Active Pressure Coefficient (KA):

 $K_{A} = [\cos\phi/\{1 + [\sin\phi(\sin\phi - \cos\phi \tan i)]^{0.5}\}]^{2}$

Passive Pressure Coefficient (K_P):

 $K_{p} = \left[\cos\phi / \{1 - \left[\sin\phi(\sin\phi + \cos\phi \tan i) \right]^{0.5} \} \right]^{2}$

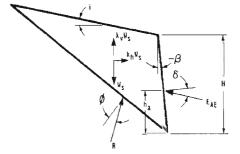
At-rest Pressure Coefficient (Ko):

 $K_{O} = (1 - \sin\phi) \cdot (1 + \sin i)$

Seismic Loading

Seismic Active Pressure Coefficient (KAE):

$$K_{dE} = \frac{\cos^{2}(\phi - \theta - \beta)}{\cos\theta\cos^{2}\beta\cos(\delta + \beta + \theta)} \times \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\right]^{-2}$$


Seismic Passive Pressure Coefficient (K_{PE}):

$$K_{PE} = \frac{\cos^2(\phi - \theta + \beta)}{\cos\theta\cos^2\beta\cos(\delta - \beta + \theta)} \times \left[1 - \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta + i)}{\cos(\delta - \beta + \theta)}}\right]^{-1}$$

1) For Seismic Active Case: $\phi \ge \theta + i$

- 2) For Seismic Passive Case: $\phi \ge \theta i$
- 3) $k_h \approx 0.74 A(A/d)^{0.25}$; A = PGA (Section 11.6.5, AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007)
- 4) For $k_h \le 0.2$, neglect k_v
- 5) For $k_h \ge 0.2$, $k_v \approx k_h/2$
- 6) Seismic Passive case neglects wall friction angle

* Level Ground Surface Only.

APPENDIX E

Draft Report Comment and Response -

Caltrans OGDN and OSFP

9	General Project Information	Review	Review Phase		Reviewer Information	ion
Dist: 03 EA: 1E2901	03 E2901	riew No) riew No) ew No)	 ≤ 5% PS&E Unchecked Details □ PS&E (Review No) □ Construction Support 	ecked Details 0] port		
EFIS	EFIS Froject No: 030000238	Uther: Other: Sciection Structure Information	<u> </u> Uther: nformation		Keviewer: 1 nomas Song, PE	
Projec	Project Name:	Structure Name		Bridge No.	Functional Unit: 59-323 (Geotech North)	tech North)
Silva	Silva Valley Pkwy Interchange	Silva Valley Pkwy OC	25-0127	27	1000-40 :01 JA	
Liaiso	Liaison Engineer:	EB Off-Ramp UC	25-0128S	28S	Phone Number: (916) 227-1057	57
Erick I	Erick Fredrickson	WB On-Ramp UC	25-0129K	29K	e-mail: Thomas song@dot ra gov	AOV
		WB Off-Ramp Br	25-0130K	30K		F O F
		WB Off-Ramp Retaining Wall			Date of Review: 12/3/2010	
		Carson Creek MSE Wall				
		Bucks Ravine Creek RCB				
		Consultant Information (to be filled in by Consultant)	be filled in by (Consultant)		
C	Consultant Structure Lead (First and Last Name)	Name) Structure Consultant Firm		Phone Number	e-mail Resp	Response Date
	Document Location (Page, Section, SSP)	OGDN Review Comment	omment		Response	>
-	General	 This review includes the following documents: The Draft Foundation Reports, General Plans, Foundation Plans, Logs of Test Borings for Silva Valley Pkwy OC (25-0127), Eastbound Off-Ramp UC (25-0129K), and Westbound On-Ramp Bridge (25-0130K). The plans for Westbound Off-Ramp Retaining Wall, Carson Creek MSE Wall, and Bucks Ravine Creek RCB 	ving documents: orts, General Plan Test Borings for -0127), Eastbound Westbound On- I Westbound Off- Nestbound Off- Mall, and Bucks Vall, and Bucks	NA Si Da		

OGDN Review Comment & Response Form

 \checkmark = Comment Resolved (for Reviewer's use)
 Note 1: Abbreviations for Typical Documents (if Abbr. is not below, type in the document type)

 P=Structure Plans
 SP=Special Provisions
 FR=Foundation Rpt
 DC=Design Calcs
 TS=Type Sel. Report
 QCC=Quant. Check Calcs

 RP=Road Plans
 E=Estimate
 H=Hydraulics Rpt
 CC=Check Calcs
 QC=Quant. Check Calcs
 OSFP Rev Form 9/24/08

Page 1 of 5

M	NA	NA	BCI used modified bearing capacity factors in consideration of the 1.5:1 endslope at both abutments. BCI includes updated calculations for spread footings at each abutment in App. D.	BCI has editied the report.
The plans indicate that the proposed construction will require approximately 20° or more of excavations in rock for abutments 1 and 3. Depending on the actual rock conditions, difficult excavation maybe encountered. Use of air tools or blasting may be required. This comment has been provided during Type Selection. If blasting is used, attention should be given to specifications that loose materials (blocks, etc) should be cleaned and cavities should be backfilled with structure concrete in footing excavations. This comment applies to some other structures too.	Two values for Coefficient of Nms are shown. One value is identified as 0.024. Another value 0.05 is actually used in calculation.	The conservatism and the related results are acceptable. It is reminded that BDS 4.4.8.1.2-1 may also be utilized with the Co being obtained from the lab results in Appendix C. This comment applies to some of other structures too.	Please provide details for the usage of a modified bearing capacity factor, Nrq of 17.4.	There is no bent for this structure. For abutment footing, resistance factor should not apply since WSD is used.
Silva Valley Pkwy OC, Br. No. 25-0127 Foundation Plan, Sheet 3 of 26 and Log of Test Borings 1 of 4, Sheet 23 of 26	Silva Valley Pkwy OC, Br. No. 25-0127, Draft Foundation Report, Appendix D, Calculations and Analyses, Bearing Capacity on Rock	Silva Valley Pkwy OC, Br. No. 25-0127, Draft Foundation Report, Appendix D, Calculations and Analyses, Bearing Capacity on Rock	Silva Valley Eastbound Off-Ramp UC, Br. No. 25-0128S, Draft Foundation Report, Page 11, 12.1 Shallow Foundation	Silva Valley Eastbound Off-Ramp UC, Br. No. 25-0128S, Draft Foundation Report, Page 11, 12.1.2 Lateral Resistance
0	e	4	w	e

Note 1: Abbreviat	ote 1: Abbreviations for Typical Documents (if Abbr. is not below, type in the document type	ments (if Abbr. is n	ot below, type in the	e document type)	
P=Structure Plans	SP=Special Provisions	FR=Foundation Rpt	DC=Design Calcs	TS=Type Sel. Report	-Structure Plans SP=Special Provisions FR=Foundation Rpt DC=Design Calcs TS=Type Sel. Report QCC=Quant. Check Calcs
RP=Road Plans E=Estimate		H=Hydraulics Rpt CC=Check Calcs	CC=Check Calcs	QC=Quant. Calcs	
OSFP Rev Form 9/24/08	/08				

Page 2 of 5

Comment Resolved (for Reviewer's use)

For slope stability analysis, BCI revised soil strength parameters for fill placed at the abutments to a friction angle of 33 degrees with cohesion of 275 pst. BCI also specifies that fill placed in front of abuts, below abuts, and to 5 ft behind abut footing heel must be tested to verify the above soil strength parameters. BCI updated strength parameters for the underlying rock (phi ranges from 40 to 43 degrees).	BCI correlated Es with N160 value and/or soil type consistent with Table 5-16, FHWA NHI-06-088, Soils and Foundations, Volume 1, December 2006. BCI modeled new embankment fill with N160 = 16 to correlate to Es value in our settlement calcs.	NA	N	VN	BCI has revised the language in the report. BCI defers to the structural engineer to define the type of lateral load(s).
An internal friction angle of 38 degree might be too high for engineered backfill. This comment applies to other structures too.	Please provide details for the estimation of Es. This comment applies to other structures too.	The report indicates the subject structure is Silva Valley Eastbound Off-Ramp UC, which is another component structure of the project. Typo?	Please provide details explaining the significant differences in recommendations for abutments 1 and 4.	Please provide details explaining the modified bearing capacity factor (N $\gamma q = 19.2$) used for bearing capacity of abutment 4. There is no discussion for abutment 1.	Is there any other lateral load(s) than seismic or other transient loads? This comment applies to some other structures too.
Silva Valley Eastbound Off-Ramp UC, Br. No. 25-0128S, Draft Foundation Report, Appendix D, Design Calculations, Bearing Capacity	Silva Valley Eastbound Off-Ramp UC, Br. No. 25-0128S, Draft Foundation Report, Appendix D, Design Calculations, Immediate Settlement of Spread Footing	Silva Valley Westbound On-Ramp UC, Br. No. 25-0129K, Draft Foundation Report, Page 10, Foundation Recommendations	Silva Valley Westbound On-Ramp UC, Br. No. 25-0129K, Draft Foundation Report, Page 12, Table 5 - Foundation Design Recommendations for Spread Footings	Silva Valley Westbound On-Ramp UC, Br. No. 25-0129K, Draft Foundation Report, Page 12, 12.1 Shallow Foundation	Silva Valley Westbound On-Ramp UC, Br. No. 25-0129K, Draft Foundation Report, Page 12, 12.1.2 Lateral Resistance
۲ ۲	œ	6	10	11	12

Note 1: Abbreviat	1: Abbreviations for Typical Documents (if Abbr. is not below, type in the document ty	ments (if Abbr. is n	ot below, type in th	e document type)	
P=Structure Plans	SP=Special Provisions	FR=Foundation Rpt	DC=Design Calcs	TS=Type Sel. Report	=Structure Plans SP=Special Provisions FR=Foundation Rpt DC=Design Calcs TS=Type Sel. Report QCC=Quant. Check Calcs
RP=Road Plans	E=Estimate	H=Hydraulics Rpt CC=Check Calcs QC=Quant. Calcs	CC=Check Calcs	QC=Quant. Calcs	
OSFP Rev Form 9/24/08	80/				

Page 3 of 5

Comment Resolved (for Reviewer's use)

	(72 ft.				
NA	For the Eastbound Offramp, BCI modeled gw at elev. 172 ft.	NA	NA	NA	NA
A friction angle of 38 degree is assigned to the fill materials, which is the same assigned for the Metavolcanic rock. The friction angle of 38 degree is too high for the fill materials.	What groundwater condition is considered in the slope stability analyses? This comment applies to some other structures too.	The bottom elevations of the abutment footings are updated from what was provided during type selection, and both footings are split at the middle. Is the reason for splitting geotechnical design, ease of constructability, or other?	The last sentence/statement in the first paragraph " a passive earth pressure neglect the upper 3 feet due to soil disturbance." may need to be further clarified. Since the passive earth pressure is against the vertical face of the footing, the 3-foot neglection maybe applicable to the bent footings due to their thickness of 4.5 feet. The thickness of the abutment footings is only 2.5 feet.	The plan indicates there'd be more than 5 feet excavation to construct the wall footing, which may require temporary shoring. This comment applies to Carson Creek MSE Wall too.	It is reminded that, for MSE wall founded on slopes, BDS 5.9.1 requires "A minimum horizontal beam of 4 feet or 0.1H (H is the wall height) wide, whichever is greater shall be provided in front of the wall."
Silva Valley Westbound On-Ramp UC, Br. No. 25-0129K, Draft Foundation Report, Appendix D, Design Calculation, Slope Stability Output	Silva Valley Westbound On-Ramp UC, Br. No. 25-0129K, Draft Foundation Report, Appendix D, Design Calculation, Slope Stability Output	Silva Valley Westbound Off -Ramp Bridge, Br. No. 25-0130K Draft Foundation Report Page 8, 10.0 Foundation Recommendations	Silva Valley Westbound Off -Ramp Bridge, Br. No. 25-0130K Draft Foundation Report Page 9, 10.1.3 Lateral Resistance	Silva Valley Westbound Off-Ramp Retaining Wall, General Plan No. 1, Sheet 1 of 6	Carson Creek MSE Wall General Plan, Sheet 1 of 8, <u>TYPICAL SECTION</u>
13	14	15	16	15	16

Note 1: Abbreviat	Note 1: Abbreviations for Typical Documents (if Abbr. is not below, type in the document ty	ments (if Abbr. is n	ot below, type in the	e document type)	
P=Structure Plans	SP=Special Provisions	FR=Foundation Rpt	DC=Design Calcs	TS=Type Sel. Report	P=Structure Plans SP=Special Provisions FR=Foundation Rpt DC=Design Calcs TS=Type Sel. Report QCC=Quant. Check Calcs
RP=Road Plans E=Estimate		H=Hydraulics Rpt CC=Check Calcs C	CC=Check Calcs	QC=Quant. Calcs	
OSFP Rev Form 9/24/08	80/				

Page 4 of 5 Comment Resolved (for Reviewer's use)

	Comment Resolved	(for Reviewer's use)		Page 5 of 5
NA		heck Calcs		
The typical 2' of aggregate base (AB) immediately underneath the wing wall footings may need to be specified with a relative compaction requirement.	the document type)		uncs kpt CUECheck Calcs QUEQuant. Calcs	
Bucks Ravine Creek RCB, Double 6' X 7' RCB Details, Sheet 2 of 3, AT CULVERT WINGWALLS	: 1: Abbreviations for Typical Documents (i	IS SP=Special Provisions	KP=Koad Plans E=Estimate H=Hydraulics Kpt	OSFP Rev Form 9/24/08
17	Note	P=Str	KP=K	OSFP

						1	Г	0	1	>	•							_					
						Br No*: al structure)		Response Date			ISES										olved	use)	6.3- 1
ĩ.		Reviewer Information (Reviewer to complete)		e-mail:		Structure Name*: var Br No*; (*Use if necessary to when comment sheets are by individual structure)		e-mail			Consultant Kesponses										\checkmark = Comment Resolved	(for Reviewer's use)	F
Projecta	Form	<u>Revi</u> (Re	EDH		w: <u>12-9-10</u>	ne*: var	sultant)	Phone Number				NA	NA		NA	NA	NA					Check Calcs	
⁷ unded	Sponse		Reviewer Name: Functional Unit:	Cost Center:	Date of Review: 12-9-10	Structure Name*: (*Use if necessary to v	filled in by Con	Phone		RT			ing the	n w/ final		w/ final	final plans. s about the	tor Phase 2 ce in front of idoe (low	e excavation			ort QCC=Quant. Check Calcs	
fice of Special Funded Projects	Comment & Response Form (Revised 12/01/09)	ie nplete)	rı	1	ed Details		Consultant Information (to be filled in by Consultant)	Structure Consultant Firm <u>MTCo.</u>		ADDITIONAL FOUNDATION REPORT	menus		2^{nd} para – Include "Br. No. 25-0072" when identifying the existing Clarksville UC.	2.2, 2^{nd} para – Verify / update all bridge information w/ final plans.	curve.	10, bullets – Verify / update all bridge information w/ final plans.	Table 4 – Verify / update all bridge information w/ final plans. 10.1.2 – Provide commentary and recommendations about the	plan for "future excavation" in front of Abutment 3 for Phase 2 construction. This difficult excavation will take place in front of the abutment (on suread frontings) and under the bridge (low	overhead). Should a significant portion of the future excavation	ruction?	Note 1: Abbreviations for Typical Documents (if Abbr. is not below, type in the document type)	TS=Type Sel. Report	QC=Quant. Calcs
ifice of S	Comme	Review Phase (OSFP Liaison to complete)	PSR/PDS (Review No	APS/PR (Review No Type Selection	65% PS&E Unchecked Details PS&E (Review No.)	Iction	isultant Info	Structure C <u>M</u>		NAL FOUND	Kevlew Com	IE290 <u>1</u> "	r. No. 25-0072 JC.	/ update all bri	' used for ARS	update all brid	date all bridge mentary and re	vation" in front ficult excavations	significant port	stage of const	ot below, type in t	DC=Design Calcs	CC=Check Calcs
O f		ISO)	PSR/PI		X 65%	Construction Other:	Col			ADDITIO		Revise "EA" to "03-1E290 <u>1</u> "	2 nd para – Include "Br. l existing Clarksville UC	^{ad} para – Verify	9.2 - Provide 'Mmax' used for ARS curve.	llets - Verify /	4 – Verify / up – Provide com	or "future excay uction. This dif utment (on sure	cad). Should a	take place during this stage of construction?	lents (if Abbr. is n		H=Hydraulics Rpt
		<u>nation</u> ste)		<u>Pkwy I/C</u>	kson	.ca.gov		(First and La			+		2 nd par existir	2.2, 2 ⁿ plans.	9.2 – I	10, bu plans.	Table 10.1.2	plan fo constri the abi	overhe	take p	ical Docum	rovisions F	H
		ect Inform in to comple	EA: <u>1E2901</u> 00000258	a Valley]	<u>c Fredricl</u>	<u>kson(a)</u> dot		cture Lead		Page, Section,	OF 35F	Cover Pg	Pg 2		Pg 7	Pg 9	Pg 10				ions for Typ	SP=Special P	E=Estimate
		General Project Information (OSFP Liaison to complete)	8	Project Name: <u>Silva Valley Pkwy I/C</u>	OSFP Liaison: Eric Fredrickson	r none: <u>22/-8910</u> e-mail: <u>eric fredrickson@dot.ca.gov</u>		Consultant Structure Lead (First and Last Name)		Doc.	(See Note 1)	FR #25-0127									ote 1: Abbreviat	P=Structure Plans	RP=Road Plans
		9	Dist: 03 Project No:	Projec	OSFP 	rnone e-mail		0		4	#		2		3	4	Ś				Z	<u>م</u> _	<u>स</u> (

 RP=Road Plans
 E=Estimate

 OSFP Rev Form 10/29/08

Page 1 of 3

*=if applicable							r clarity.			the footing	omas & Company,							
Str Name*: <u>Silva Valley - various</u> Br No*	NA	NA	NA	NA	NA	BCI has revised the "EA."	BCI has revised the text for clarity.	BCI has edited the text.	BCI provides Mmax.	BCI has revised / updated the footing dimensions based on the revised foundation	data provided by Mark Thomas & Company, Inc.	NA	NA	NA	NA		NA	
Dist-EA03-1E2901 Reviewer: EDF S	Include PM. Revise "EA" to "03-1E290 <u>1</u> "	2.1 – Revise the description from "100' south" to "xx' north". Be clear between 'old / existing' and 'new' Silva Valley Parkway.	 1st para – Include "Br. No. 25-0072" when identifying the existing Clarksville UC. 2nd para – Delete 1st & 2nd sentence. 2.2, 3rd para – Verify side slopes at abutment 4 (4:1?). 	10.2 - Provide 'Mmax' used for ARS curve.	12 - Revise "EB Off-Ramp" with "WB On-Ramp"	Include PM. Revise "EA" to "03-1E290 <u>1</u> "	2.1 – Be clear between 'old / existing' and 'new' Silva Valley Parkway.	1^{st} para – Include "Br. No. 25-0072" when identifying the existing Clarksville UC. 2^{nd} para – Delete 1^{st} & 2^{nd} sentence.	10.2 - Provide 'Mmax' used for ARS curve.	Table 3, 4, 5 – Revise / update footing 'L' dimension.		Revise "EA" to "03-1E290 <u>1</u> "	 2.2 – Revise bridge width dimension. 3 – Complete the description of the borings ("two"borings?). Are there also "two" test pits? 		10 – Revise / update abutment and bent footing dimensions.		Can this wall be eliminated with only slope excavation? R/W is available and existing side slopes are fairly steep with rocky material.	
	Cover Pg	Pg 1	Pg 2	Pg 8	Pg 10	Cover Pg	Pg 1	Pg 2	Pg 8	Pg 10, 11		Cover Pg	Pg 2	Pg 6	Pg 8, 9		General	
	FR #25-0129K					FR #25-0128S						FR #25-0130K					Ret Wall #3	
	9	٢	8	6	10	11	12	13	14	15		16	17	18	19	20	21	22

Submittal Data (Reviewer to complete)

	0		
	licable		
	*=if applicable		
various			
alley -			
Silva V			
nplete) ame*: <u>5</u>	*		
<u>Submittal Data</u> (Reviewer to complete) EDF Str Name*: <u>Silva Valley - various</u>	Br Nc		
Review			
Data (
mittal			
Reviewer:			
Revi			
1062			
A03-1E			
Dist-EA03-1E2901			
ц			
		23	24

Page 3 of 3