GAS PIPE LINE CALCULATION SIZING

USING CPC PIPE SIZING TABLE (NATURAL GAS)

This handout will guide you thru the basic, most common method for sizing a natural gas piping system for residential or commercial application. There are other methods available for sizing these systems by either a complex formulaic method described in the California Plumbing Code, or the system can be engineered by a qualified professional.
The information below is paraphrased from the California Plumbing Code and is provided as an aid.

Sizing of Gas Piping Systems.

Gas piping systems shall be of such size and so installed as to provide a supply of gas to meet the maximum demand and supply gas to each appliance inlet at not less than the minimum supply pressure required by the appliance.

Required Gas Supply.

Volume. The hourly volume of gas required at each piping outlet shall be taken as not less than the maximum hourly rating as specified by the manufacturer of the appliance or appliances to be connected to each such outlet.
Where the rating of the gas appliance(s) to be installed is unknown, Table 1 shall be permitted to be used to estimate requirements of typical appliances.
To obtain the cubic feet per hour of gas required, divide the input of the appliances by the average Btu (kW.h) heating value per cubic foot of the gas. The average Btu per cubic foot is 1,100 .

Longest Length Method. The size of each section of gas piping shall be determined using the total length of piping from the meter to the most remote outlet and the load of that section (see calculation example in "Figure A" use steps 1-6 below:

Sizing of Piping Sections To determine the size of each section of pipe in any system using piping specific table ${ }^{*}$, and proceed as follows:
(1) Measure the length of the pipe from the gas meter location to the most remote outlet on the system.
(2) Locate that total length in the left-hand column of sizing table ${ }^{*}$, or the next longer distance where the table does not give the exact length.
(3) Starting at the most remote outlet, find in the row just selected the gas demand for the outlet.

Where the exact figure of demand is not shown, choose the next larger figure in the row.
(4) At the top of this column will be found the correct size of pipe.
(5) Using this same row, proceed in a similar manner for each section of pipe serving this outlet. For each section of pipe, determine the total gas demand supplied by that section.
(6) Size each section of branch piping not previously sized by measuring the distance from the gas meter location to the most remote outlet in that branch and follow the procedures of steps $2,3,4$, and 5 above. Size branch piping in the order of their distance from the meter location, beginning with the most distant outlet not previously sized.

TABLE 1		
APPROXIMATE GAS INPUT FOR TYPICAL APPLIANCES		
APPLIANCE	INPUT Btu/h. (Approx.)	Cubic Feet of Gas Per Hour
Space Heating Units		
Warm air furnaces:		
Single family	100,000	91
Multifamily, per unit	60,000	55
Hydronic boilers:		
Single family	100,000	91
Multifamily, per unit	60,000	55
Space and Water-Heating Units		
Hydronic boilers:		
Single family	120,000	109
Multifamily, per unit	75,000	68
Water-Heating Appliances		
Water heater, automatic:		
Storage 30 to 40 gal. tank	35,000	32
Water heater, automatic		
Storage 50 gal. tank	50,000	45
Water heater, automatic instantaneous:		
Capacity at 2 gal./minute	142,800	130
Capacity at 4 gal./minute	285,000	259
Capacity at 6 gal./minute	428,400	389
Water heater, domestic		
Circulation or side-arm	35,000	32
Cooking Appliances		
Range, freestanding, domestic	65,000	59
Built-in oven/ broiler, domestic	25,000	23
Built-in counter-top range, domestic	40,000	36
Other Appliances		
Clothes dryer, domestic	35,000	32
Gas fireplace - direct vent	40,000	36
Gas log unit	80,000	73
Barbecue	40,000	36
Gas Refrigerator	3,000	2
For SI units: 1 Btu per hour $=.0293$ *Maximum gas demand of outl	H (35,000 btu/ht	u per cubic foot

FIGURE A

SAMPLE SCHEMATIC DRAWING

Method for determining correct pipe sizing per 1216.1.1:

(1) Compute CFM demand for all appliances

Maximum gas demand of outlet A:
32 cubic feet per hour (from Table 1). $\quad 35,000 \mathrm{BTU} / 1,100 \mathrm{BTU}^{2}=32$
Maximum gas demand of outlet B: 3000/1,100=3
3 cubic feet per hour (from Table 1). $\quad 65,000 / 1,100=59$
Maximum gas demand of outlet C:
59 cubic feet per hour (from Table 1).
Maximum gas demand of outlet D:
136 cubic feet per hour [150,000 Btu/hour divided by 1100 Btu per cubic foot].
(2) Determine the length of pipe from the gas meter to the most remote outlet (outlet A) is 60 feet. $\operatorname{Sec} 1(10)+\operatorname{Sec} 2(10)+\operatorname{Sec} 3(30)=60$
(3) Using the length in feet column row marked 60 feet in Table 2^{*} for type of pipe:

Outlet A, supplying 32 cubic feet per hour, requires $1 / 2$ inch pipe.
Section 1 , supplying outlets A and B, or 35 cubic feet per hour requires $1 / 2$ inch pipe.
Section 2, supplying outlets A, B, and C, or 94 cubic feet per hour requires $3 / 4$ inch pipe.
Section 3, supplying outlets A, B, C, and D, or 230 cubic feet per hour, requires 1 inch pipe.

TABLE 1216.2(1)
SCHEDULE 40 METALLIC PIPE [NFPA 54: TABLE 6.2(b)] ${ }^{1,2}$

									GAS: NATURAL					
									INLET PRESSURE:			LESS THAN 2 psi		
									PRESSURE DROP:			0.5 in. w.c.	\leftarrow conserrvat	
									SPECIFIC GRAVITY:			0.60		
	PIPE SIZE (inch)													
NOMINAL:	1/2	3/4	1	11/4	11/2	2	21/2	3	4	5	6	8	10	12
ACTUALID:	0.622	0.824	1.049	1.380	1.610	2.067	2.469	3.068	4.026	5.047	6.065	7.981	10.020	11.938
LENGTH (feet)	CAPACITY IN CUBIC FEET OF GAS PER HOUR													
10	172	360	678	1390	2090	4020	6400	11300	23100	41800	67600	139000	252000	399000
20	118	247	466	957	1430	2760	4400	7780	15900	28700	46500	95500	173000	275000
30	95	199	374	768	1150	2220	3530	6250	12700	23000	37300	76700	139000	220000
40	81	170	320	657	985	1900	3020	5350	10900	19700	31900	65600	119000	189000
50	72	151	284	583	873	1680	2680	4740	9660	17500	28300	58200	106000	167000
60	65	137	257	528	791	1520	2430	4290	8760	15800	25600	52700	95700	152000
70	60	126	237	486	728	1400	2230	3950	8050	14600	23600	48500	88100	139000
80	56	117	220	452	677	1300	2080	3670	7490	13600	22000	45100	81900	130000
90	52	110	207	424	635	1220	1950	3450	7030	12700	20600	42300	76900	122000
100	50	104	195	400	600	1160	1840	3260	6640	12000	19500	40000	72600	115000
125	44	92	173	355	532	1020	1630	2890	5890	10600	17200	35400	64300	102000
150	40	83	157	322	482	928	1480	2610	5330	9650	15600	32100	58300	92300
175	37	77	144	296	443	854	1360	2410	4910	8880	14400	29500	53600	84900
200	34	71	134	275	412	794	1270	2240	4560	8260	13400	27500	49900	79000
250	30	63	119	244	366	704	1120	1980	4050	7320	11900	24300	44200	70000
300	27	57	108	221	331	638	1020	1800	3670	6630	10700	22100	40100	63400
350	25	53	99	203	305	587	935	1650	3370	6100	9880	20300	36900	58400
400	23	49	92	189	283	546	870	1540	3140	5680	9190	18900	34300	54300
450	22	46	86	177	266	512	816	1440	2940	5330	8620	17700	32200	50900
500	21	43	82	168	251	484	771	1360	2780	5030	8150	16700	30400	48100
550	20	41	78	159	239	459	732	1290	2640	4780	7740	15900	28900	45700
600	19	39	74	152	228	438	699	1240	2520	4560	7380	15200	27500	43600
650	18	38	71	145	218	420	669	1180	2410	4360	7070	14500	26400	41800
700	17	36	68	140	209	403	643	1140	2320	4190	6790	14000	25300	40100
750	17	35	66	135	202	389	619	1090	2230	4040	6540	13400	24400	38600
800	16	34	63	130	195	375	598	1060	2160	3900	6320	13000	23600	37300
850	16	33	61	126	189	363	579	1020	2090	3780	6110	12600	22800	36100
900	15	32	59	122	183	352	561	992	2020	3660	5930	12200	22100	35000
950	15	31	58	118	178	342	545	963	1960	3550	5760	11800	21500	34000
1000	14	30	56	115	173	333	530	937	1910	3460	5600	11500	20900	33100
1100	14	28	53	109	164	316	503	890	1810	3280	5320	10900	19800	31400
1200	13	27	51	104	156	301	480	849	1730	3130	5070	10400	18900	30000
1300	12	26	49	100	150	289	460	813	1660	3000	4860	9980	18100	28700
1400	12	25	47	96	144	277	442	781	1590	2880	4670	9590	17400	27600
1500	11	24	45	93	139	267	426	752	1530	2780	4500	9240	16800	26600
1600	11	23	44	89	134	258	411	727	1480	2680	4340	8920	16200	25600
1700	11	22	42	86	130	250	398	703	1430	2590	4200	8630	15700	24800
1800	10	22	41	84	126	242	386	682	1390	2520	4070	8370	15200	24100
1900	10	21	40	81	122	235	375	662	1350	2440	3960	8130	14800	23400
2000	NA	20	39	79	119	229	364	644	1310	2380	3850	7910	14400	22700

For SI units: I inch $=25 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ cubic foot per hour $=0.0283 \mathrm{~m}^{3} / \mathrm{h}, 1$ pound-force per square inch $=6.8947 \mathrm{kPa}, 1 \mathrm{inch}$ water column $=0.249 \mathrm{kPa}$
Notes:
1 Table entries are rounded to 3 significant digits.
${ }^{2}$ NA means a flow of less than $10 \mathrm{f}^{3} / \mathrm{h}\left(0.283 \mathrm{~m}^{3} / \mathrm{h}\right)$.

TABLE 1216.2(20)
POLYETHYLENE PLASTIC PIPE [NFPA 54-12: TABLE 6.2(u)]*

					GAS: INLET PRESSURE:		NATURAL LESS THAN 2 psi	
					PRESSURE DROP:		0.5 in. w.c.	
					SPECIFIC GRAVITY:		0.60	
	PIPE SIZE (inch)							
NOMINAL OD:	1/2	3/4	1	$11 / 4$	$11 / 2$	2	3	4
DESIGNATION:	SDR 9.3	SDR 11	SDR 11	SDR 10	SDR 11	SDR 11	SDR 11	SDR 11
ACTUALID:	0.660	0.860	1.077	1.328	1.554	1.943	2.864	3.682
LENGTH (feet)	CAPACITY IN CUBIC FEET OF GAS PER HOUR							
10	201	403	726	1260	1900	3410	9450	18260
20	138	277	499	865	1310	2350	6490	12550
30	111	222	401	695	1050	1880	5210	10080
40	95	190	343	594	898	1610	4460	8630
50	84	169	304	527	796	1430	3950	7640
60	76	153	276	477	721	1300	3580	6930
70	70	140	254	439	663	1190	3300	6370
80	65	131	236	409	617	1110	3070	5930
90	61	123	221	383	579	1040	2880	5560
100	58	116	209	362	547	983	2720	5250
125	51	103	185	321	485	871	2410	4660
150	46	93	168	291	439	789	2180	4220
175	43	86	154	268	404	726	2010	3880
200	40	80	144	249	376	675	1870	3610
250	35	71	127	221	333	598	1660	3200
300	32	64	115	200	302	542	1500	2900
350	29	59	106	184	278	499	1380	2670
400	27	55	99	171	258	464	1280	2480
450	26	51	93	160	242	435	1200	2330
500	24	48	88	152	229	411	1140	2200

For SI units: 1 inch $=25 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ cubic foot per hour $=0.0283 \mathrm{~m}^{3} / \mathrm{h}, 1$ pound-force per square inch $=6.8947 \mathrm{kPa}, 1 \mathrm{inch}$ water column $=0.249 \mathrm{kPa}$ * Table entries are rounded to 3 significant digits.

TABLE 1216.2(8)
SEMI-RIGID COPPER TUBING [NFPA 54-12: TABLE $6.2(i)]^{1,2}$

							GAS:	NATURAL	
						INLET PRESSURE:		LESS THAN 2 psi	
						PRESSURE DROP:		0.5 in w.c.	
						SPECIFIC GRAVITY:		0.60	
	TUBE SIZE (inch)								
NOMINAL:	1/4	3/8	1/2	5/8	3/4	1	11/4	11/2	2
	3/8	$1 / 2$	5/8	3/4	7/8	11/8	13/6	-	-
OUTSIDE:	0.375	0.500	0.625	0.750	0.875	1.125	1.375	1.625	2.125
inside: ${ }^{3}$	0.305	0.402	0.527	0.652	0.745	0.995	1.245	1.481	1.959
LENGTH (feet)	CAPACITY IN CUBIC FEET OF GAS PER HOUR								
10	27	55	111	195	276	590	1060	1680	3490
20	18	38	77	134	190	406	730	1150	2400
30	15	30	61	107	152	326	586	925	1930
40	13	26	53	92	131	279	502	791	1650
50	11	23	47	82	116	247	445	701	1460
60	10	21	42	74	105	224	403	635	1320
70	NA	19	39	68	96	206	371	585	1220
80	NA	18	36	63	90	192	345	544	1130
90	NA	17	34	59	84	180	324	510	1060
100	NA	16	32	56	79	170	306	482	1000
125	NA	14	28	50	70	151	271	427	890
150	NA	13	26	45	64	136	245	387	806
175	NA	12	24	41	59	125	226	356	742
200	NA	11	22	39	55	117	210	331	690
250	NA	NA	20	34	48	103	186	294	612
300	NA	NA	18	31	44	94	169	266	554
350	NA	NA	16	28	40	86	155	245	510
400	NA	NA	15	26	38	80	144	228	474
450	NA	NA	14	25	35	75	135	214	445
500	NA	NA	13	23	33	71	128	202	420
550	NA	NA	13	22	32	68	122	192	399
600	NA	NA	12	21	30	64	116	183	381
650	NA	NA	12	20	29	62	111	175	365
700	NA	NA	11	20	28	59	107	168	350
750	NA	NA	11	19	27	57	103	162	338
800	NA	NA	10	18	26	55	99	156	326
850	NA	NA	10	18	25	53	96	151	315
900	NA	NA	NA	17	24	52	93	147	306
950	NA	NA	NA	17	24	50	90	143	297
1000	NA	NA	NA	16	23	49	88	139	289
1100	NA	NA	NA	15	22	46	84	132	274
1200	NA	NA	NA	15	21	44	80	126	262
1300	NA	NA	NA	14	20	42	76	120	251
1400	NA	NA	NA	13	19	41	73	116	241
1500	NA	NA	NA	13	18	39	71	111	232
1600	NA	NA	NA	13	18	38	68	108	224
1700	NA	NA	NA	12	17	37	66	104	217
1800	NA	NA	NA	12	17	36	64	101	210
1900	NA	NA	NA	11	16	35	62	98	204
2000	NA	NA	NA	11	16	34	60	95	199

For SI units: 1 inch $=25 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ cubic foot per hour $=0.0283 \mathrm{~m}^{3} / \mathrm{h}, 1$ pound-force per square inch $=6.8947 \mathrm{kPa}$, 1 inch water column $=0.249 \mathrm{kPa}$
Notes:
${ }^{1}$ Table entries are rounded to 3 significant digits.
${ }^{2}$ NA means a flow of less than $10 \mathrm{ft}^{3} \mathrm{~h}\left(0.283 \mathrm{~m}^{3} / \mathrm{h}\right)$.
${ }^{3}$ Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.

