## Appendix D Traffic M odeling Methodology

## D. 1 Introduction

The project consists of targeted amendments to the El Dorado County Plan (TGPA), a comprehensive zoning code update (ZOU), and design standards and guidelines for mixed use development.

This appendix describes the detailed methodology and procedures used to develop the El Dorado County Travel Demand Model (TDM) that served as the basis for evaluating the traffic operations for each of six study scenarios evaluated for the TGPA/ZOU". The term "existing" refers to conditions in 2010, not 2014. The methodology has been revised since the release of the Draft EIR and this Appendix D supersedes that included in the Draft EIR.

The methodology described below was used for the traffic analysis in the Recirculated Partial Draft EIR (RPDEIR) that was available for public review from January 29 through March 16, 2015. It was also used in the responses to comments and the traffic projections presented in the Final EIR. The results are reflected in the Final EIR.

The six roadway network scenarios were based on the following.

1. Study Scenario 1 (2010 Baseline Conditions)—Existing conditions; includes road network in 2010.
2. Study Scenario 2 (Project 2035 Impact) - 2035 land use buildout (with road network in 2010) + Project (TGPA/ ZOU buildout assumption) with existing CIP/RTP Improvements.
3. Study Scenario 3 (2025 Baseline Conditions) - 2010 road network with 2025 CIP/RTP Improvements.
4. Study Scenario 4 (Project 2025 Impact) — 2010 road network + Project (TGPA/ ZOU buildout assumption) with 2025 CIP/RTP Improvements.
5. Study Scenario 5 (2035 Baseline) - 2010 road network with 2035 land use buildout outside of El Dorado County with existing CIP/RTP Improvements.
6. Study Scenario 6 (Cumulative Conditions in 2035) - 2035 road network + Project (TGPA/ ZOU buildout assumption) with 2035 CIP/RTP Improvements.

Information about the model development activities, inputs, and approach is organized in the
following topic areas.
। Traffic Analysis Zones (TAZs) development.
I Roadway Network development.
I Trip Generation and Trip Distribution overview.

[^0]I Mode Choice and Model Sensitivity to Smart Growth factors.
I Traffic Assignment and Validation.
। Land Use Scenarios.

## D. 2 Traffic Analysis Zones Development

TAZs are an essential part of the TDM that serve multiple purposes including the following.
I Provide the basic unit for converting spatial area data into tabular data for use by the TDM.
I Used to aggregate homogenous or discrete land use for analysis purposes.
। Used to manage interactions between internal land uses.
। Basis for channeling trip loading onto the model roadway network.
। Serves as a repository for land use, employment, population, socioeconomic, and other data.
। Provides a tool to facilitate understanding of spatial differences between geographical areas, different land use scenarios, and analysis periods.

। Used to display information related to land use, employment, population, socioeconomic, and other data.

Several TAZ data sets provided by El Dorado County and the Sacramento Area Council of Governments (SACOG) were reviewed in preparation for developing the updated El Dorado County TAZ structure for use in the newly developed TDM.

Previous El Dorado County TAZ Structure - The current 267-zone system is available as a Geographical Information System (GIS) layer from El Dorado County and includes data attributes related to two different residential types and three employment types. Information is provided for the entirety of El Dorado County, except the area of the Tahoe Basin covered by the Tahoe Regional Planning Agency (TRPA).
Draft 2010 El Dorado County TAZ Structure - This 934-zone system is available as a GIS layer from El Dorado County but does not include any data attributes. This interim work product was not finalized and was not utilized in El Dorado County TDM forecasting activities.

SACOG SACMET07 TAZ Structure - The current TAZ structure is available as a GIS layer and has 1,528 zones, of which 126 are in El Dorado County. Similar to the current El Dorado County TAZ structure, this source does not provide coverage for the Tahoe Basin covered by TRPA.

Each of these TAZ structures was reviewed to determine their alignment with the planned base year roadway network, coverage of existing El Dorado County development, and GIS topology. Based on this review and input from El Dorado County staff, it was determined that the Draft 2010 El Dorado County TAZ Structure was of sufficient detail that it would best serve as a starting point for developing a TAZ structure for use in the TDM update.

The general layout of TAZs was approached with the following considerations in mind.
। The overriding consideration of TAZ development is that the resultant network loading support logical travel demand forecasts.

। The TAZ structure should reflect overall model accuracy and limitations.
I Large developments should be disaggregated.

I Highly concentrated urban zones should be reasonably sized.
I TAZ borders should follow network roadways/physical constraints.
I TAZs must have direct access to the roadway network.
I The TAZ structure should be understandable to the general population.
Based on these considerations and approach, the 2010 El Dorado County TAZ structure was reviewed and modifications to TAZs were recommended. The recommended modifications included
the following.
I 576 zones were recommended for aggregation resulting in 145 new zones (some of which were identified for further disaggregation and/or had network connectivity issues that needed to be addressed).

I 286 zones were recommended to be kept "as is."
I 58 zones were recommended to be redrawn to address network connectivity issues.
I 14 zones were recommended for disaggregation.
Subsequently, Kimley-Horn staff met with El Dorado County staff to discuss recommended TAZ modifications and the considerations listed above. Based on the comments received from El Dorado County staff, and based on further analysis, the revised TAZs shown in Figure D.2-1 were developed in consideration of the following reasons and inputs:

I Public comments/additional El Dorado County staff comments.
I Anticipated locations of the future growth.
I Inclusion of TAZs outside of the County to improve model performance.
I Unique land uses.
As a result, the analysis included 493 TAZs within El Dorado County and 193 TAZs outside El Dorado County in Sacramento and Placer Counties.

## D. 3 Roadway Network Development

The roadway network is an essential part of the TDM that serves multiple purposes including the following.

I Basis for estimating travel time between TAZs.
I Basis and repository for traffic assignments.
I Tool to facilitate an understanding of how trips are distributed.
I Tool for displaying the level of traffic congestion associated with different land use scenarios.
The following network data sets provided by El Dorado County and SACOG were reviewed.
GPS roads - this GIS layer is an inventory of existing roadways in the County, including all of the highways and major roads identified in the Circulation Element.

2025 SACMET Network - this network from the SACMET model was converted from its Cube format for analysis in GIS.


2025 EDC TDM Network - this network from the current El Dorado County TDM was converted from its MINUTP format for analysis in GIS.

The GPS roads layer is a detailed inventory of existing roadways in El Dorado County. The network classifies roadways in three categories: Highways (freeways and California Department of Transportation [Caltrans] operated arterials), Major Roads, and Minor Roads. This layer consists of line features with several data attributes coded in a GIS database. The review focused on the data attributes that stored information about the physical characteristics of the roadway, including pavement status (paved or unpaved), existing number of lanes, and segment length.

The SACMET roadway network includes regional highways and major arterials in the Sacramento region, including those in El Dorado County. The network is used to assign traffic for the current 2025 SACMET forecast (note that SACOG's official model of record is now SACSIM). The review focused on the data attributes coded for roadway classification, free-flow speed, capacity, number of lanes, and link distance.

The process for developing the base year and future networks for the updated El Dorado County model consisted of the following.

I Preparing an overlay of the GPS roads network with the 2025 SACMET and 2025 El Dorado County TDM network to analyze the high-level differences between the detailed GIS network and the coarser, 2025 model networks originally developed in Cube/MINUTP formats.

I Preparing a comparison map in GIS of the roadway network in the Circulation Element and the 2025 model networks.

I Distributing network comparison maps to El Dorado County staff and the Board of Supervisors for review and input. Based on El Dorado County staff and public comments, a list of edits for the revised base year and future 2035 networks were developed and subsequently implemented. The final, revised network reflects the El Dorado County staff comments. Roadways in the future network (used as both the basis for 2025 and 2035 analyses), included the following CIP projects (the CIP identifiers are provided in parenthesis).

- Headington Road Extension (71375)
- Silver Springs Parkway (76107 and 76108)
- Country Club Drive Extension (GP124, GP125, and GP126)
- Diamond Springs Parkway (72334 and 72368)
- Latrobe/White Rock Connector (66116)
- Saratoga Way Extension (71324 and GP147)

Additionally, the following improvements were included in the future network.
। Ray Lawyer Drive Extension (based on direction from El Dorado County staff).
I High Occupancy Vehicle (HOV) Lanes extending to Greenstone Road (based their provision in the SACOG Metropolitan Transportation Plan/Sustainable Communities Strategy [MTP/SCS] 2035 and the Transportation Concept Report and Corridor System Management Plan[TCR/ CSMP], U.S. Highway 50) (Sacramento Area Council of Governments 2012, California Department of Transportation 2014).

## D. 4 Trip Generation and Trip Distribution Overview

The El Dorado County TDM as designed relies heavily on the trip generation and trip distribution submodel previously developed for the SACOG's SACMET model. This submodel has its basis in regional survey data collected and reported in the 2000 Sacramento Area Household Travel Survey: Final Report. This submodel has been refined several times prior to its most recent available description which is provided in the 2008 Model Update Report: SACMET 07. Based on a review of available documentation and a review of model scripts and procedures, the trip generation and trip distribution submodel was determined to be consistent with standard practices for regional model development, thus statistically valid and appropriate for application to the El Dorado County TDM.

The trip generation submodel consists of estimating trip productions and attractions based on socioeconomic variables (occupied dwelling units, population, and employment). The socioeconomic data inputs that go into the model are derived from land use projections. The trip generation submodel features eight basic trip purposes: Home-based Work; Home-based Shop; Home-based School; Home-based Other; Work-Other; Other-Other; Commercial Vehicle 2 Axel; and Commercial Vehicle 3+ Axle.

The trip distribution submodel uses a gravity model where trips flow from an origin to a destination. The gravity model formula determines destinations according to the size of the destination (level of attractions) and the attractiveness of the destination as determined by travel distance or travel cost. The trip distribution submodel is applied to non-work and non-home based trip purposes; destinations for home-based work purposes are determined within the model choice submodel. In general, people tend to tolerate long travel times and distances during their commute compared to non-work travel such as shopping. The gravity model formula includes a friction factor that considers the automobile travel time for non-commute trips.

## D.4.1 Mode Choice Submodel and Sensitivity to Smart Growth Factors

Mode choice refers to the method of transportation that a trip-maker utilizes (e.g., car, transit, bike, or walk). Within the mode choice submodel, the likelihood that a particular travel mode is selected is based on several variables including household socioeconomic profile, the location and availability of mode choices at the beginning and end of a trip, and select transportation costs.

The El Dorado County TDM utilizes the mode choice submodel previously developed for SACOG's SACMET model. This submodel has been refined several times prior to its most recent available description which is provided in the 2008 Model Update Report: SACMET 07. Based on a review of available documentation and a review of model scripts and procedures, the mode choice submodel was determined to be consistent with standard practices for regional model development, thus statistically valid and appropriate for application to the El Dorado County TDM.

Specific socioeconomic characteristics that the mode choice model considers include the number of persons, workers, automobiles owned, and income. The submodel also takes into account the travel time and costs for each travel mode and the land use characteristics at the trip origin and destination zones. Person trips are assigned to one of seven travel modes.

। Drive alone
I HOV-2 occupants

I HOV - 3 or more occupants
I Transit, walk access
1 Transit, drive access (using park and ride lots)
। Walk
। Bicycle
Traditional four-step models are limited in their ability to account for adjustments to land use decisions and the built-environment-namely the pursuit of smart growth principles that feature greater mixed-use development and accessibility to transit. These factors have been studied extensively and have been documented to have an effect on increasing the share of trips completed by transit, biking, and walking. Smart-growth strategies that integrate land use decisions and transportation are increasingly relevant for regional planning agencies charged with carrying out the requirements of Senate Bill (SB) 375. This legislation includes the requirement that a SCS be prepared with the RTP.

To improve the sensitivity of traditional TDMs to smart-growth strategies, many agencies have developed and incorporated methodologies into their forecasting processes. Though the tools for improving the sensitivity of TDMs to smart-growth strategies vary, many if not all make reference to the 5Ds, (density, diversity, design, destination and distance) as having an impact on travel behavior. The relationship between the 5Ds and their effect on trip-making is well documented and has been demonstrated in numerous studies. The following is a description of the 5D factors that influence trip-making.

Destination refers to the accessibility to activity centers. Households located in low density developments often experience greater travel time to other destinations.

Distance refers to the proximity to transit stations. Transit service situated near households or employment centers is more attractive to users.

Density refers to the intensity of development. Areas with high concentrations of residences and jobs feature greater transit accessibility and walkability, resulting in less automobile travel.

Diversity measures the balance of housing and jobs. It may also consider demographic inputs such as the number of available vehicles per household to determine if households are more or less likely to be transit-dependent.

Design refers to the attractiveness of the built environment to pedestrians and cyclists. Areas that provide a safe environment for walking or biking enable and encourage more non-motorized trips.

The 5Ds are integrated into the El Dorado County TDM process as a refinement to the mode choice submodel. The non-commercial trips in the assignable vehicle trip tables from the mode choice model are adjusted based on the outcome of the 5D analysis. The result is a vehicle trip table that reflects a reduction in automobile trips based on the sensitivity of the zones in El Dorado County to smart-growth strategies according to the 5D factors. This model refinement is available to be applied, at the discretion of the practitioner, in response to specific analysis requirements.

## D. 5 Traffic Assignment and Validation

The principle techniques used to validate the El Dorado County TDM involved the use of static validation tests. Static validation tests compare the model's base year traffic volume estimates to traffic counts using standard statistical measures. Although the evaluation criteria for validating travel demand models differ among planning agencies, most California agencies reference standards suggested by the Federal Highway Administration (FHWA) (Federal Highway Administration 1990) and Caltrans (California Department of Transportation 1992). Basic guidance regarding model validation is also provided in the 2010 California Regional Transportation Plan Guidelines (California Transportation Commission 2010). The validation techniques, measures of effectiveness (MOEs), and criteria adopted for the El Dorado County TDM conform to the requirements provided in these sources and are consistent with those of other comparable models.

As part of the model development process, two-way traffic counts for local roadways were obtained from El Dorado County for the 5 -year period between 2007 and 2011. Additional year 2010 counts for state highways were obtained for State Route (SR) 49 and SR 193 from the Caltrans Traffic and Vehicle Systems Unit website. Freeway traffic counts on U.S. Highway 50 were obtained from the Freeway Performance Measurement System (PeMS) website for mixed-flow and HOV lanes. Based on a review of this data, a total of 219 count locations were identified as being appropriate for use in validating the model.

At the more than 200 locations identified for analysis, the El Dorado County TDM was validated for a 2010 base year using traffic count data provided by El Dorado County for the period covering 2009 to 2011. The base year traffic assignment was validated for the daily (24-hour) assignment, the AM peak hour assignment, and the PM peak hour assignment. Validation analysis was carried out at the aggregate level (the entire model), through the use of screenlines to cordon off discrete areas of the county. The analysis was also stratified by roadway classification.

Validation of other modes, including transit, was completed through reasonableness checks using data collected during the course of this study and/or normal trip estimates for similar areas.

In December 2013, Caltrans staff requested the County perform dynamic validation tests on the El Dorado County TDM. Dynamic validation requires the changing of various individual inputs, such as removing a lane in each direction, adding a lane, deleting or adding a link, adding or deleting dwelling units in a zone, or adding or deleting employment in a zone, and rerunning the model for each separate change. The outputs indicate if the model if correctly adjusting for the variations. County staff performed the dynamic validation tests as requested. Caltrans reviewed the results and indicated the TDM had successfully completed the dynamic validation tests.

## D. 6 Development of Land Use Scenarios

The approach to developing base year (2010) and future (2025 and 2035) land use and socioeconomic data (required inputs for the El Dorado County TDM) for each of the scenarios are discussed in this section. The foundation of these datasets was the numerous existing regional modeling, land use, and socioeconomic reports and data sets available, including the following.

2008 El Dorado County Housing Element—amended in April 21, 2009 this report includes data and analysis on housing, by type, within El Dorado County.

2010 Living Units database - compiled by El Dorado County staff during the development of the ongoing Housing Element update, this version was revised to include data through only 2010, at the request of Kimley-Horn, to determine multi-family units (as parcel data does not include this as a standard attribute) in the base year.

2010 El Dorado County parcel GIS files-this version which was revised to include data through only 2010 was prepared by El Dorado County at the request of Kimley-Horn for use as the base file for identifying single-family residences and the use and status of individual parcels.

2010 U.S. Census data and GIS files-obtained from the U.S. Census website that includes information on employment, dwelling units, and housing vacancy rates.

2000 Sacramento Area Household Travel Survey: Final Report-this is the most recent household survey available for the SACOG region and includes detailed information on the socioeconomic characteristics and related trip characteristics of its inhabitants.

2008 SACOG Small Area Data Set—prepared by SACOG in support of regional modeling activities, this data set includes detailed parcel level analysis of employment and housing characteristics.

2008 SACOG Traffic Analysis Zones— prepared by SACOG in support of regional modeling activities, this data set includes detailed cross classification information for 2008 and 2035 conditions.

2008 Model Update Report: SACMET 07— although not final this report discusses the major processes carried out by the most recent version of the SACMET model.

Primarily, the base year (2010) dataset was developed using housing and land use data provided in the existing El Dorado County Assessor data provided in the 2010 El Dorado County parcel GIS files, employment data provided in the 2008 SACOG Small Area Data Set, and 2010 U.S. Census data and GIS files. Validation of the base year (2010) model inputs was accomplished through a review of available census data and other readily available data sources. Specifically, 2010 Census data from the decennial census was used as the basis for tabulating the number of dwelling units, vacancy rates, households, and employment in El Dorado County.

Future land use scenarios were developed based on the following process.

1. 2025 and 2035 housing and employment forecasts for future scenarios considering the continuation of the 2004 General Plan and based on implementation of the TGPA and ZOU were prepared. These numerical forecasts were developed based on an evaluation of historical population growth, historical development patterns, anticipated market conditions, and other forecast sources including SACOG and the California Department of Finance (DOF). These resulting forecasts were aggregated using the market area definitions previously utilized by El Dorado County for the purpose of forecasting future growth.
2. Achievable development, defined as an estimate of the reasonably expected intensity of development that is anticipated for a particular land use or parcel given known opportunities, constraints, and assumptions was subsequently defined for more urbanized locations where development is primarily anticipated to occur in the future. This process involved an extensive parcel level analysis of vacant and underdeveloped areas, primarily in Community Regions with the provision of sewer, where residential, multi-family housing, commercial, research and development, public, and industrial development could be situated. This analysis relied heavily on a detailed evaluation of aerial imagery for the purpose of identifying existing development
characteristics and evaluating terrain, wetland, and other physical considerations; and local knowledge of development patterns and regulations.
3. Using the future housing and employment forecasts developed for market areas and the resulting achievable development, 2025 and 2035 growth was spatially assigned and subsequently aggregated into TAZs based on the following considerations.
a. El Dorado County 2004 General Plan and/or TGPA and ZOU (depending on scenarios) land use goals and objectives and relevant State legislation.
b. Historical trends for Community Regions, Rural Regions, and Rural Centers.
c. Proximity to existing or planned infrastructure including site access (transportation, roadways, public water, and sewer).
d. Approved project status where applicable.
e. Historical growth patterns and trends.
f. Proximity to U.S. Highway 50 and other major commute corridors.
g. Proximity to other ancillary land uses and public services.

## D. 7 Roadway Capacity and Level of Service

## D.7.1 Level of Service

The level of service (LOS) was calculated for each roadway segment in the regional roadway system to evaluate the quality of existing traffic conditions. LOS is a general measure of traffic operating conditions whereby a letter grade, from A (the best) to F (the worst), is assigned. These grades represent the perspective of drivers and are an indication of the comfort and convenience associated with driving. The LOS grades are generally defined as follows.

I LOS A-represents free-flow travel with an excellent level of comfort and convenience and the freedom to maneuver.

I LOS B—has stable operating conditions, but the presence of other road users causes a noticeable, though slight, reduction in comfort, convenience, and maneuvering freedom.

I LOS C-has stable operating conditions, but the operation of individual users is significantly affected by the interaction with others in the traffic stream.

I LOS D—represents high-density, but stable flow. Users experience severe restriction in speed and freedom to maneuver, with poor levels of comfort and convenience.

I LOS E—represents operating conditions at or near capacity. Speeds are reduced to a low but relatively uniform value. Freedom to maneuver is difficult with users experiencing frustration and poor comfort and convenience. Unstable operation is frequent, and minor disturbances in traffic flow can cause breakdown conditions.

I LOS F-is used to define forced or breakdown conditions. This condition exists wherever the volume of traffic exceeds the capacity of the roadway. Long queues can form behind these bottleneck points with queued traffic traveling in a stop-and-go fashion.

For the TGPA/ZOU, LOS was determined by comparing existing and forecasted traffic volumes for selected roadway segments with peak hour LOS capacity thresholds. These thresholds are shown in Table D.7-1 and were developed based on the methodologies contained in the Highway Capacity Manual (HCM) (Transportation Research Board 2010). The HCM methodology is the prevailing measurement standard used throughout the United States.

Table D.7-1. Level of Service Typical Traffic Volumes

| Operational Class ${ }^{\text {a }}$ | Class Code | Peak-Hour Level of Service Traffic Volumes ${ }^{\text {d }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | D | E |
| Minor Two-Lane Highway ${ }^{\text {b }}$ | 2R, W20, W18 |  | 330 | 710 | 1,310 | 2,480 |
| Major Two-Lane Highway ${ }^{\text {b }}$ | 2U |  | 330 | 710 | 1,310 | 2,480 |
| Two-Lane Arterial ${ }^{\text {a }}$ | 2A | - | - | 850 | 1,540 | 1,650 |
| Four-Lane Arterial, Undivided | 4AU | - | - | 1,760 | 3,070 | 3,130 |
| Four-Lane Arterial, Divided | 4AD | - | - | 1,850 | 3,220 | 3,290 |
| Six-Lane Arterial, Divided | 6 AD | - | - | 2,760 | 4,680 | 4,710 |
| Two Freeway Lanes ${ }^{\text {c }}$ | 2 F | - | 2,070 | 2,880 | 3,590 | 4,150 |
| Two Freeway Lanes + Auxiliary Lane ${ }^{\text {c }}$ | 2FA | - | 2,610 | 3,630 | 4,520 | 5,230 |
| Three Freeway Lanes ${ }^{\text {c }}$ | 3F | - | 3,100 | 4,320 | 5,380 | 6,230 |
| Three Freeway Lanes + Auxiliary Lane ${ }^{\text {c }}$ | 3FA | - | 3,640 | 5,070 | 6,320 | 7,310 |
| Four Freeway Lanes ${ }^{\text {c }}$ | 4F | - | 4,140 | 5,760 | 7,180 | 8,310 |

Source: Kimley-Horn and Associates 2014.
Notes:
${ }^{\text {a Roadways are classified based on their operational characteristics which do not necessarily correspond to }}$ their functional definition.
${ }^{\text {b }}$ Only roadways meeting the HCM criteria, including those related to signal spacing, for Two-Lane Highways are designated as such.
${ }^{\text {c }}$ Service volumes are for a single direction.
${ }^{\mathrm{d}}$ Some Level of Service thresholds may not be determinable/achievable depending on facility type.
The planning thresholds shown in this table are provided for the purpose of assisting in the identification of locations where operational problems may exist and are based on information provided in the 2010 Highway Capacity Manual and other industry sources. These values not appropriate for making detailed or final determinations regarding operational or design considerations. Those determinations should only be made after a detailed operational analysis, consistent with current Highway Capacity Manual procedures, and/or other design evaluations are completed.

The transportation analysis is based on the AM and PM peak hours because these represents the highest hourly volume during a typical weekday compared to using average daily traffic (ADT). For this analysis peak hour volumes were used because they are better indicators of operational performance as they represent the highest volumes under normal conditions. This volume is used to design future roadways because of its regular weekday occurrence. Using a higher or lower volume hour could lead to inadequate designs or designs that are underused. The one exception to exclusive use of the PM peak hour is for U.S. Highway 50 from the Sacramento County line to Placerville. This section of U.S. Highway 50 serves a high volume of commuter traffic during the AM and PM peak hours. In some cases, the AM peak-hour volumes, which also occur on a regular basis, are higher than PM peak-hour volumes. Further, U.S. Highway 50 is a divided freeway where improvements
can be made to only one direction if desired. Therefore, analyzing the AM peak hour was considered necessary to identify potential impacts that may occur only during this time period.

## D.7.2 El Dorado County Performance Standard

The Transportation and Circulation Element of the County's General Plan includes Policy TC-Xd which implements the General Plan GOAL TC-X: To coordinate planning and implementation of roadway improvements with new development to maintain adequate levels of service on County roads.

Policy TC-Xd of the County Transportation and Circulation Element provides the following operational LOS threshold for County maintained road and highway segments within the unincorporated areas of the County:

Level of Service (LOS) for County-maintained roads and state highways within the unincorporated areas of the county shall not be worse than LOS E in the Community Regions or LOS D in the Rural Centers and Rural Regions except as specified in Table TC-2. The volume to capacity ratio of the roadway segments listed in Table TC-2 shall not exceed the ratio specified in that table. Level of Service will be as defined in the latest edition of the Highway Capacity Manual (Transportation Research Board, National Research Council) and calculated using the methodologies contained in that manual. Analysis periods shall be based on the professional judgment of the Department of Transportation which shall consider periods including, but not limited to, Weekday Average Daily Traffic (ADT), AM Peak Hour, and PM Peak Hour traffic volumes.

The list of County roads allowed to operate at LOS F is shown in Table D.7-2.
Table D.7-2. El Dorado County Roads Allowed to Operate at Level of Service Fa ${ }^{\text {a }}$ (Through December 31, 2018)

| Road Segment |  | Max. V/C ${ }^{\text {b }}$ |
| :--- | :--- | :--- |
| Cambridge Road | Country Club Drive to Oxford Road | 1.07 |
| Cameron Park Drive | Robin Lane to Coach Lane | 1.11 |
| Missouri Flat Road | U.S. Highway 50 to Mother Lode Drive | 1.12 |
|  | Mother Lode Drive to China Garden Road | 1.20 |
| Pleasant Valley Road | El Dorado Road to State Route 49 | 1.28 |
| U.S. Highway 50 | Canal Street to junction of State Route 49 (Spring Street) | 1.25 |
|  | Junction of State Route 49 (Spring Street) to Coloma Street | 1.59 |
|  | Coloma Street to Bedford Avenue | 1.61 |
|  | Bedford Avenue to beginning of highway | 1.73 |
|  | Beginning of highway to Washington overhead | 1.16 |
|  | Ice House Road to Echo Lake | 1.16 |
|  | Pacific/Sacramento Street to new four-lane section | 1.31 |
|  | U.S. Highway 50 to State Route 193 | 1.32 |
|  | State Route 193 to county line | 1.51 |

Source: El Dorado County 2004:Table TC-2.
Notes:
a Roads improved to their maximum width given right-of-way and physical limitations.
${ }^{\mathrm{b}}$ Volume to Capacity ratio.

## D.7.3 Caltrans Performance Standard

U.S. Highway 50 is a Caltrans facility, and as such, is subject to the performance standards of Caltrans for assessing LOS. The thresholds for U.S. Highway 50 are established in the U.S. Highway 50 Transportation Concept Report and Corridor System Management Plan (TCR/ CSMP). These reports provide the future or concept LOS for the segments in El Dorado County. Table D.7-3 summarizes the existing and concept LOS for U.S. Highway 50 segments in El Dorado County. It should be noted that improvements included in the future concept configurations have been incorporated into the TDM for the applicable scenarios.

I Segments 8 through 14 are in western El Dorado County where the traffic modeling was conducted. Only the performance standards for U.S. Highway 50 are utilized in this analysis as segments from other state routes under Caltrans jurisdiction were not in the TDM update.

SR 49 is also a Caltrans facility, and is subject to the performance standards of Caltrans for assessing levels of service. The threshold for highway segments of SR 49 in El Dorado County is LOS E, which is established in the SR 49, Transportation Concept Report, which in turn references the El Dorado County General Plan. Table D.7-4 summarizes the concept LOS for SR 49 segments in El Dorado County. Improvements included in the future concept configurations have been incorporated into the traffic demand model for the applicable scenarios.

Table D.7-3 U.S. Highway 50 Transportation Concept Report and Corridor System Management Plan Data

| Segment | Description | County | $\begin{aligned} & \text { Current } \\ & \text { LOS } \end{aligned}$ | Concept LOS ${ }^{\text {a }}$ | Existing Facilityb | 20 Year Build Facilityc | Ultimate Facility ${ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | I-80 to Yolo/ Sacramento County Line | Yolo | E | E | 8F (6F btw Jefferson Blvd ramps) | 8F+ITS | $\begin{aligned} & \text { 8F+2HOV+ Aux } \\ & \text { Lanes+ITS+ICM } \end{aligned}$ |
| 2 | Yolo/Sacramento <br> County Line to State <br> Routes (SR) 99 and 51 | Sacramento | F | E | 8F | $8 \mathrm{~F}+2 \mathrm{HOV}+$ Aux Lanes+ITS | 8F $+2 \mathrm{HOV}+$ Aux <br> Lanes+ITS+ICM |
| 3 | SR 99 and SR 51 to Watt Avenue | Sacramento | F | E | 8F | $8 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{ITS}$ | $\begin{aligned} & \text { 8F+2HOV+ Aux } \\ & \text { Lanes+Transition+IT } \\ & \text { S+ICM } \end{aligned}$ |
| 4 | Watt Avenue to Zinfandel Drive | Sacramento | F | E | $8 \mathrm{~F}+2 \mathrm{HOV}$ | $8 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{Aux}$ <br> Lanes+ITS | $\begin{aligned} & 8 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{Aux} \\ & \text { Lanes+ITS+ICM } \end{aligned}$ |
| 5 | Zinfandel Drive to Sunrise Blvd | Sacramento | E | E | $8 \mathrm{~F}+2 \mathrm{HOV}$ | $\begin{aligned} & 8 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{Aux} \\ & \text { Lanes+ITS } \end{aligned}$ | $\begin{aligned} & 8 \mathrm{~F}+2 \mathrm{HOV}+\text { Aux } \\ & \text { Lanes+Transition+IT } \\ & \text { S+ICM } \end{aligned}$ |
| 6 | Sunrise Blvd to Folsom Blvd | Sacramento | F | E | $6 \mathrm{~F}+2 \mathrm{HOV}$ <br> to Hazel Ave., $4 \mathrm{~F}+2 \mathrm{HOV}$ to Folsom Blvd | $8 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{ITS}+A u x$ <br> Lanes to Hazel Ave., $4 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{ITS}$ <br> +Aux Lanes to Folsom Blvd | $8 \mathrm{~F}+2 \mathrm{HOV}+$ ITS ICM + <br> Aux Lanes to Hazel <br> Ave., <br> $4 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{ITS}+\mathrm{ICM}+$ <br> Aux Lanes to Folsom |
| 7 | Folsom Blvd to Sacramento/ El Dorado County Line | Sacramento | F | E | $4 \mathrm{~F}+2 \mathrm{HOV}$ | $4 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{Aux}$ Lanes+ITS | $\begin{aligned} & 4 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{Aux} \\ & \text { Lanes+ITS+ICM } \end{aligned}$ |
| 8 | Sacramento/El Dorado County Line to El Dorado Hills Blvd. (Latrobe Road) | El Dorado | F | E | $4 \mathrm{~F}+2 \mathrm{HOV}$ | $\begin{aligned} & 4 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{Aux} \\ & \text { Lanes+ITS } \end{aligned}$ | $\begin{aligned} & 4 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{Aux} \\ & \text { Lanes+ITS+ICM } \end{aligned}$ |
| 9 | Latrobe Road to Bass Lake Road | El Dorado | E | E | $4 \mathrm{~F}+2 \mathrm{HOV}$ | $4 \mathrm{~F}+2 \mathrm{HOV}+$ Aux Lanes +ITS | 4F $+2 \mathrm{HOV}+$ Aux Lanes + ITS +ICM |
| 10 | Bass Lake Road to Cameron Park Drive | El Dorado | D | E | $4 \mathrm{~F}+2 \mathrm{HOV}$ | $\begin{aligned} & 4 \mathrm{~F}+2 \mathrm{HOV}+A u x \\ & \text { Lanes+ ITS } \end{aligned}$ | $\begin{aligned} & \text { 4F+2HOV+Aux } \\ & \text { Lanes+ ITS } \end{aligned}$ |


| Segment | Description | County | Current LOS | Concept LOS ${ }^{\text {a }}$ | Existing Facility ${ }^{\text {b }}$ | 20 Year Build Facility ${ }^{\text {c }}$ | Ultimate Facility ${ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | Cameron Park Drive to So. Shingle Road (Ponderosa Rd.) Ponderosa Rd. to | El Dorado | D | E | 4F | $\begin{aligned} & 4 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{Aux} \\ & \text { Lanes+ ITS } \end{aligned}$ | $\begin{aligned} & 4 \mathrm{~F}+2 \mathrm{HOV}+\mathrm{Aux} \\ & \text { Lanes+ ITS } \end{aligned}$ |
| 12 | Missouri Flat Road | El Dorado | C | E | 4F | $\begin{aligned} & 4 \mathrm{~F}+2 \mathrm{HOV}+\text { Aux } \\ & \text { Lanes+ITS to } \\ & \text { Greenstone, } 4 \mathrm{~F}+\text { Aux } \\ & \text { Lanes+ITS to } \\ & \text { Missouri Flat } \end{aligned}$ | $\begin{aligned} & 4 \mathrm{~F}+2 \mathrm{HOV}+\text { Aux } \\ & \text { Lanes+ITS to } \\ & \text { Greenstone, } 4 \mathrm{~F}+\text { Aux } \\ & \text { Lanes+ITS to } \\ & \text { Missouri Flat } \end{aligned}$ |
| 13 | Missouri Flat Road to End of Freeway in Placerville | El Dorado | D | E | 4F | 4F | 4F+Aux Lanes+ITS |
| 14 | End of Freeway in Placerville to Bedford Avenue | El Dorado | C | D | 4E+Merge Lanes (Eastbound) | 4E+Merge Lanes+ITS | 4E+Merge <br> Lanes+ITS+ICM |
| 15 | Bedford Ave. to Cedar Grove Exit | El Dorado | C | E/D | 4F to Smith Flat Rd, 4E to Camino | 4F to Smith Flat, 4E to Camino | $4 \mathrm{~F}+$ Aux Lanes + ITS to Smith Flat, 4E+ITS to Camino |
| 16 | Cedar Grove Exit to 0.67 mile east of Sly Park Rd | El Dorado | B | E | 4F | 4F | $4 \mathrm{~F}+\mathrm{ITS}$ |
| 17 | 0.67 miles east of Sly Park Road to Ice House Road | El Dorado | B | D | 3C, 2.0 miles 4E, 5.3 miles 3C, 0.3 mile | 3C, 2.0 miles 4E, 5.3 miles 3C, 0.3 mile | $\begin{aligned} & \text { 3C+ITS, } 2.0 \text { miles } \\ & \text { 4E+ITS, } 5.3 \text { miles } \\ & \text { 3C+ITS, } 0.3 \text { mile } \end{aligned}$ |
| 18 | Ice House Road to Echo Summit | El Dorado | E | D | 2C; 0.35 mile of $2-w y$ left-turn lane | 2C; 0.35 mile of 2 way left-turn lane | $\text { 2C+ITS+ICM; } 0.35$ <br> mile of 2-way leftturn lane |
| 19 | Echo Summit to SR 89 South/Luther Pass Road | El Dorado | E | D | 2C | 2C | 2C+ITS+ICM+Bike <br> Lanes |


| Segment | Description | County | Current LOS | Concept LOS ${ }^{\text {a }}$ | Existing Facility ${ }^{\text {b }}$ | 20 Year Build Facility ${ }^{\text {c }}$ | Ultimate Facility ${ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | SR 89 South/Luther Pass Road to State Route 89 North/Lake Tahoe Blvd | El Dorado | E | D | $\begin{aligned} & \text { 3C, } 0.86 \text { mile;2C, } \\ & \text { 3.64 miles } \\ & \text { 5C, } 0.61 \text { mile } \end{aligned}$ | 3C, 0.86 mile;2C, 3.64 miles 5C, 0.61 mile | $\begin{aligned} & \text { 3C+ITS+ICM, } 0.86 \\ & \text { mile; 2C+ITS+ICM, } \\ & 3.64 \text { miles; } \\ & 5 \mathrm{C}+\mathrm{ITS}+\mathrm{ICM}, 0.61 \\ & \text { mile } \end{aligned}$ |
| 21 | SR 89 North/Lake Tahoe Blvd to State of Nevada | El Dorado | E | E | 5C | 5C | $5 \mathrm{C}+\mathrm{ITS}+\mathrm{ICM}+\text { Bike }$ <br> lanes |

Source: California Department of Transportation 2014.
Notes:
${ }^{\text {a }}$ Concept LOS: The minimum acceptable LOS over the next 20 years.
${ }^{\text {b }}$ Facility Type Codes: C = Conventional Highway; E = Expressway; F = Freeway; HOV = High Occupancy Vehicle lanes; Aux = Auxiliary lanes; ITS = Intelligent Transportation Systems; ICM = Integrated Corridor Management.
${ }^{\mathrm{c}}$ Horizon Year Build Facility: The long-term vision for how the facility will operate and what its configuration will be in the horizon year.
${ }^{\mathrm{d}}$ Ultimate Facility: The future roadway with improvements needed beyond a 20 -year timeframe.

## Table D.7-4. State Route 49 Transportation Concept Report Data

| Segments in El Dorado County | Description | Current Facility ${ }^{\text {a }}$ | $\begin{aligned} & \text { Current } \\ & \text { LOS } \end{aligned}$ | Concept Facilityb | Concept LOS ${ }^{c}$ | Improvements Towards Concept Facility | Ultimate Facility ${ }^{d}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Amador/El Dorado County line to Union Mine Rd. | 2C | E | 2C | F | Widen to 40'standard | 2C |
| 2 | Union Mine Rd. south of El Dorado to Sacramento St. south of Placerville | 2C | E | 2C | E | Widen to 40'standard | 2/4E |
| 3 | Sacramento St. south of Placerville to junction of SR 193 | 2C | F | 2 C | F | Improve capacity and operations at SR 49/ U.S. 50 junction | 2/4E |
| 4 | Junction of SR 193 to El Dorado/Placer County Line |  | E | 2 C | E | Widen to 40'standard | 2/4E |

## Source: California Department of Transportation 2000

Facility Type Codes: C = Conventional Highway; E = Expressway; F = Freeway; HOV = High Occupancy Vehicle lanes; Aux = Auxiliary lanes.
${ }^{\text {b }}$ Concept Facility: The future roadway with improvements needed in the next 20 years. If LOS " $F$ ", no further degradation of service from existing " $F$ " is acceptable, as indicated by delay performance measurement.
c 20-Year Concept LOS: The minimum acceptable LOS over the next 20 years.
${ }^{d}$ Ultimate Facility: The future roadway with improvements needed beyond a 20-year timeframe.

## D. 8 Roadway System Analysis

The results of the transportation analysis are described in this section in the form of six study scenarios. For the roadway system, the analysis focused on modeled project impacts in 2025 and its contribution to 2035 cumulative conditions. Three baselines are represented in the scenarios: 2010, 2025 with future CIP/RTP road improvements, and 2035 cumulative impact. These results focused on regional performance measures, which allow for a comparison of the TGPA to the baselines.

The modeling done for each of the six roadway network study scenarios was based on the following.
I Study Scenario 1 (2010 Baseline Conditions) - 2010 conditions; includes 2010 road network.
I Study Scenario 2 (Project 2035 Impact)— 2035 land use buildout (with 2010 road network) + Project (TGPA/ ZOU buildout assumption) with 2010 CIP/RTP Improvements.

I Study Scenario 3 (2025 Baseline Conditions)—Current road network with 2025 CIP/RTP Improvements.

। Study Scenario 4 (Project 2025 Impact) - 2010 road network + Project (TGPA/ ZOU buildout assumption) with 2025 CIP/RTP Improvements.

। Study Scenario 5 (2035 Baseline) - 2010 road network with 2035 land use buildout outside of El Dorado County with 2010 CIP/RTP Improvements.

। Study Scenario 6 (Cumulative Conditions in 2035) - 2035 road network + Project (TGPA/ ZOU buildout assumption) with 2035 CIP/RTP Improvements.

For the transit, bicycle, pedestrian, and aviation systems, the analysis was limited to a review of the existing 2004 General Plan policies and implementation measures. If a potential inconsistency was discovered, a significant impact was identified.

## D.8.1 Regional Performance Measure Results

Regional transportation performance measures generated by the TDM are shown in Table D.8-1 for each scenario. Key changes in regional travel demand that are projected to occur for each study scenario include an increase in daily vehicle trips, Vehicle Miles Traveled (VMT), and Vehicle Hours Traveled (VHT). Increases occur for both the absolute values of these performance measures as well as the per household values.

Table D.8-1. Vehicle Miles Traveled Comparison of Study Scenarios

| Performance Measure | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| Households (HH) | 55,493 | 71,442 | 64,472 | 64,664 | 55,493 | 71,442 |
| Employment | 44,468 | 60,139 | 53,251 | 53,251 | 44,468 | 60,139 |
| Daily Vehicle Trips | 449,734 | 597,855 | 536,492 | 537,531 | 448,701 | 603,549 |
| Daily Vehicle Miles <br> Traveled (VMT) | $3,660,397$ | $4,729,056$ | $4,336,931$ | $4,334,534$ | $3,868,757$ | $4,831,076$ |
| Daily Vehicle Hours <br> Traveled (VHT) | 102,854 | 153,816 | 114,958 | 115,134 | 107,776 | 133,952 |
| Daily Vehicle Trips | 8.10 | 8.37 | 8.32 | 8.31 | 8.09 | 8.45 |
| per HH |  | 66.19 | 67.27 | 67.03 | 69.72 | 67.62 |
| Daily VMT per HH | 65.96 | 2.15 | 1.78 | 1.78 | 1.94 | 1.87 |
| Daily VHT per HH | 1.85 |  |  |  |  |  |

Source: Kimley-Horn and Associates 2014.

Table D.8-1 demonstrates that with an increase in the number of households and employment, the number of VMT and VHT will increase. However, when looking at the increases on a per household basis, the difference in VMT, and all but Scenario 2 for VHT, is within $5 \%$ of the existing condition. This is generally because the TGPA/ZOU affects a limited area within the county and does not result in major changes to the land use pattern in the adopted General Plan.

The TDM analysis evaluated 219 roadway segments for each of the six study scenarios as part of the traffic analysis to evaluate the effects of the TGPA/ZOU on the County's roadway network. Table D.88, LOS Summary Table, summarizing the analysis results is located at the end of this chapter.

Peak-hour traffic volumes from the TDM were analyzed through a postprocessor developed specifically for the County. This postprocessor is a Microsoft Excel spreadsheet that reads raw traffic volumes from the TDM and then adjusts these volumes to account for under or overestimates that may have occurred in the base-year model. The postprocessor then determines roadway segment LOS based on a table of LOS capacity thresholds as shown in Table D.7-1.

Tables D.8-2 through D.8-7 show which roadway segments have a drop in LOS from an acceptable LOS D or better to a LOS E or F for each of the six study scenarios. While LOS E is considered an acceptable level of service for some areas of the County and U.S. Highway 50 , it is still shown in the following tables for informational purposes.

Table D.8-2. Study Scenario 1 (2010 Baseline Conditions) - 2010 Conditions; Includes 2010 Road Network

|  |  |  |  |  | Scenario 1 - Existing Conditions (2010) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Classa- |  |  | ume |  | ethod <br> S |  |
| ID | Roadway | Segment | Scenario Exist, 2, and 5 | $\begin{aligned} & \text { Minimum } \\ & \text { LOS } \\ & \hline \end{aligned}$ | AM <br> Peak <br> Hour | PM <br> Peak <br> Hour | AM <br> Peak <br> Hour | PM <br> Peak <br> Hour | Impact? <br> ( $\mathrm{Y} / \mathrm{N}$ ) |
| 44 | Green <br> Valley <br> Road ${ }^{\text {b }}$ | 100 ft W of El Dorado Hills Boulevard | 2A | E | 1,060 | 1,650 | D | F | Y |
| 47 | Missouri Flat Road | 100 ft S of China Garden Rd | 2A | E | 1,250 | 1,580 | D | E | N |
| 151 | Green <br> Valley <br> Road ${ }^{\text {b }}$ | 200 ft E of County line | 2A | E | 1,730 | 2,050 | F | F | Y |
| Source: Kimley-Horn and Associates <br> ${ }^{\text {a }}$ Roadway Classification - See Table 3 detail. <br> ${ }^{\mathrm{b}}$ Traffic Volumes for this roadway ar adjacent roadway volumes. <br> 2R, W20, W18 = Minor Two-Lane Hig <br> 2U = Major Two-Lane Highway <br> 2A = Two-Lane Arterial <br> 4AU = Four-Lane Arterial, Undivided <br> 4AD = Four-Lane Arterial, Divided <br> 6AD = Six-Lane Arterial, Divided |  |  | 2014. <br> 3.9-3 for a <br> e estimat <br> ghway | ditional <br> based on | $\begin{aligned} & 2 \mathrm{~F}=\mathrm{T} \\ & 2 \mathrm{FA}= \\ & 3 \mathrm{~F}=\mathrm{T} \\ & 3 \mathrm{FA}= \\ & (3) \\ & 4 \mathrm{~F}=\mathrm{F} \end{aligned}$ | o Freew wo Free ree Free hree Fre <br> ur Freew | Lanes <br> y Lane <br> y Lane <br> way Lan <br> Lanes | Auxili <br> 3) <br> + Auxi | y Lane (3) <br> ry Lane |

Under the existing conditions, assuming the project is not implemented, only one segment of Missouri Flat Road is anticipated to operate at LOS E in the PM peak hour. This segment is within a Community Region of the county where LOS E is acceptable. Two segments of Green Valley Road would operate at an unacceptable LOS F and are expected to continue to operate at LOS F in the near future. Because these levels of service reflect existing conditions without the project, no project impacts would occur.

Table D.8-3. Study Scenario 2 (Project 2035 Impact)- 2035 Land Use Buildout (with Existing Road Network) + Project (TGPA/ ZOU Buildout Assumption) with 2010 CIP/ RTP Improvements

| ID | Roadway | Segment | Classa Scenario Exist, 2, and 5 | $\begin{aligned} & \text { Minimum } \\ & \text { LOS }^{b} \end{aligned}$ | Scenario 2 |  |  |  | Impact? <br> (Y/N) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Volume |  | 2010 Method LOS |  |  |
|  |  |  |  |  | AM <br> Peak <br> Hour | PM Peak Hour | AM Peak Hour | PM Peak Hour |  |
| 1 | $\begin{aligned} & \text { U.S. Highway } \\ & 50-\text { EB GP } \end{aligned}$ | W of Latrobe Rd | 2FA | E | 2,490 | 4,920 | B | E | N |
| 2 | U.S. Highway 50-WB GP | W of Latrobe Rd | 2F | E | 4,000 | 2,950 | E | D | N |
|  | $\begin{array}{\|l} \hline \text { U.S. Highway } \\ \text { 50-EB GP } \\ \hline \end{array}$ | W of Silva Valley Pkwy | 2FA | E | 2,300 | 5,010 | B | E | N |
|  | $\begin{aligned} & \text { U.S. Highway } \\ & 50-\mathrm{WB} \text { GP } \end{aligned}$ | W of Silva Valley Pkwy | 2F | E | 3,750 | 3,040 | E | D | N |
| 5 | $\begin{aligned} & \text { U.S. Highway } \\ & 50-\text { EB GP } \end{aligned}$ | W of Bass Lake | 2FA | D/ Ec | 2,300 | 5,010 | B | E | Y |
| 6 | $\begin{aligned} & \text { U.S. Highway } \\ & 50-\mathrm{WB} \text { GP } \end{aligned}$ | W of Bass Lake | 2F | D/ Ec | 3,750 | 3,040 | E | D | Y |
|  | $\begin{aligned} & \hline \text { U.S. Highway } \\ & \text { 50-EB GP } \end{aligned}$ | W of <br> Cambridge Rd | 2F | D/Ec | 2,100 | 3,670 | C | E | Y |
| 9 | U.S. Highway $50-\text { EB GP }$ | W of Cameron Park | 2F | E | 2,140 | 3,680 | C | E | N |
| 13 | $\begin{aligned} & \text { U.S. Highway } \\ & 50-\text { EB GP } \end{aligned}$ | W of Ponderosa | 2F | E | 2,410 | 3,660 | C | E | N |
| 14 | U.S. Highway 50-WB GP | W of Ponderosa | 2F | E | 3,610 | 3,230 | E | D | N |
| 32 | Cameron Park Dr | 200 ft N of Oxford Rd | 2A | E | 1,420 | 1,710 | D | F | Y |
| 38 | El Dorado Hills Bl | 300 ft S of Francisco Dr | 2A | E | 1,390 | 1,620 | D | E | N |
| 44 | Green Valley Rdd | 100 ft W of <br> El Dorado Hills <br> Boulevard | 2A | E | 1,370 | 2,050 | D | F | Y |
| 47 | Missouri Flat Rd | 100 ft S of China Garden Rd | 2A | E | 1,350 | 1,600 | D | E | N |
| 55 | South Shingle Rd | 100 ft S of Mother Lode Dr | 2A | E | 1,230 | 1,590 | D | E | N |


| ID | Roadway | Segment | Classa - <br> Scenario <br> Exist, 2, <br> and 5 | Minimum LOS $^{\text {b }}$ | Scenario 2 |  |  |  | Impact? <br> ( $\mathrm{Y} / \mathrm{N}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Volume |  | 2010 Method LOS |  |  |
|  |  |  |  |  | AM Peak Hour | PM Peak Hour | AM <br> Peak <br> Hour | PM Peak Hour |  |
| 56 | Cameron Park Dr | 100 ft N of Robin Ln | 2A | Fe | 1,060 | 1,610 | D | E | N |
| 151 | $\begin{aligned} & \text { Green Valley } \\ & \text { Rd }^{\mathrm{d}} \end{aligned}$ | 200 ft E of County line | 2A | E | 2,000 | 2,230 | F | F | Y |
| 226 | White Rock Rd | At County Line | 2A | E | 1,060 | 1,910 | D | F | Y |

Source: Kimley-Horn and Associates 2014.
${ }^{\text {a }}$ Roadway Classification - See Table 3.9-3 for additional detail.
${ }^{\mathrm{b}}$ These minimum LOS values represent the 20 -year concept LOS from the Caltrans TCCR 50 because the model includes the 20 -year concept facility improvements shown in Table 3.9-1.
${ }^{\text {c The minimum acceptable operations is LOS D on this }}$ segment of U.S. Highway 50 according to County standards. The Caltrans Concept LOS is LOS E. Impacts are identified based on the most stringent threshold (LOS D).
${ }^{\mathrm{d}}$ Traffic Volumes for this roadway are estimates based on adjacent roadway volumes
e This roadway segment is included in the list of roadway segments allowed to operate at LOS F as shown in Table 3.9-4.

Note: "GP" stands for General Purpose Lanes (includes auxiliary lanes)
Study Scenario 2 examines the potential impact of future development under the General Plan to 2035, with the TGPA/ ZOU amendments, absent any additional road improvements. This is a worsecase scenario that would occur in the absence of the road improvements that would otherwise be funded by the TIM and CIP requirements. This is provided solely as a point of comparison; there is no intent on the part of the County to rescind the TIM and CIP requirements. As shown, four Countymaintained roadway segments (IDs $32,44,151$, and 226) would change to an unacceptable LOS F. These roadway segments are not on the list of roadways that are allowed to operate at LOS F pursuant to the General Plan (see Table D.7-2). The decrease in LOS to LOS F on these roadway segments would be a significant impact. Under this scenario, two segments of Green Valley Road would continue to operate at LOS F with the addition of project traffic. Adding additional traffic to roads operating at LOS F would be a significant impact. Three segments of U.S. Highway 50 (west of Bass Lake Rd and west of Cambridge Rd) would operate at LOS E. These segments of U.S. Highway 50 are located in a Rural Region of the County where the minimum LOS is D. The additional traffic from the proposed project would cause these segments of the highway to decrease in LOS to E. The decrease from LOS D to LOS E on these segments of U.S. Highway 50 would be a significant impact.

Table D.8-4. Study Scenario 3 (2025 Baseline Conditions) - 2010 Road Network with 2025 CIP/ RTP Improvements


Under this scenario, two County-maintained roadway segments would change to an unacceptable LOS F. One segment of Missouri Flat Road (ID 48) is identified in the General Plan as a roadway segment allowed to operate at LOS F. One County-maintained roadway segment (ID 32) would change to an unacceptable LOS F. The decrease in LOS on this roadway segments would be a significant impact.

Table D.8-5. Study Scenario 4 (Project 2025 Impact)- 2010 Road Network + Project (TGPA/ ZOU
Buildout Assumption) With 2025 CIP/ RTP Improvements

| ID | Roadway | Segment | Classa ${ }^{-}$ <br> Scenario <br> 3,4 , and 6 | Minimum LOS | Scenario 4 |  |  |  | Impact? <br> ( $\mathrm{Y} / \mathrm{N}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Volume |  | 2010 MethodLOS |  |  |
|  |  |  |  |  | AM <br> Peak <br> Hour | PM <br> Peak <br> Hour | AM <br> Peak <br> Hour | PM <br> Peak <br> Hour |  |
| 14 | U.S. <br> Highway <br> 50-WB GP | W of Ponderosa | 2F | Eb | 3,440 | 3,240 | D | D | N |
| 32 | Cameron <br> Park Dr | 200 ft N of <br> Oxford Rd | 2A | E | 1,300 | 1,650 | D | F | Y |
| 46 | Missouri Flat Rd | 100 ft S of China Garden Rd | 2A | E | 1,290 | 1,440 | D | D | N |
| 48 | Missouri <br> Flat Rd | 400 yds N of Forni Rd | 4AD | $\mathrm{Fc}^{\text {c }}$ | 2,400 | 3,120 | D | D | N |
| Source: Kimley-Horn and Associates 2014. ${ }^{\text {a Roadway Classification - See Table D.7-1 for }}$ additional detail. <br> 2R, W20, W18 = Minor Two-Lane Highway $2 \mathrm{U}=$ Major Two-Lane Highway <br> 2A = Two-Lane Arterial <br> 4AU = Four-Lane Arterial, Undivided <br> $4 \mathrm{AD}=$ Four Lane Arterial, Divided |  |  |  |  | Six-Lan Two Fre Two Fr Three Fr Three F Four Fre <br> OS from own in T ments all ry lanes) | e Arteria eway La eeway L eeway L reeway eway La <br> the Calt able D.7-3. owed to | , Divided <br> (3) <br> nes + Au <br> nes (3) <br> anes + <br> (3) <br> ns TCR <br> perate | liary La <br> xiliary <br> becau <br> LOS F | (3) <br> ne (3) <br> the <br> shown |

This scenario has the same roadway impacts as Study Scenario 3. Two County-maintained roadway segments would change to an unacceptable LOS F. One segment of Missouri Flat Road (ID 48) is identified in the General Plan as a roadway segment allowed to operate at LOS F., One Countymaintained roadway segment (ID 32) would change to an unacceptable LOS F. The decrease in LOS on this roadway segments would be a significant impact.

Table D.8-6. Study Scenario 5 (2035 Baseline)- 2010 Road Network with 2035 Land Use Buildout Outside of El Dorado County with 2010 CIP/ RTP Improvements

| ID | Roadway | Segment | Class ${ }^{\text {_ }}$ <br> Scenario <br> Exist, 2, <br> and 5 | $\begin{aligned} & \text { Minimum } \\ & \text { LOS } \end{aligned}$ | Scenario 5 |  |  |  | Impact?$(\mathrm{Y} / \mathrm{N})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Volume |  | 2010 Method LOS |  |  |
|  |  |  |  |  | AM <br> Peak <br> Hour | PM <br> Peak <br> Hour | AM <br> Peak <br> Hour | PM <br> Peak <br> Hour |  |
|  | Green Valley $\mathrm{Rd}^{b}$ | 100 ft W of El Dorado Hills Boulevard | 2A | E | 1,131 | 1,790 | D | F | Y |
| 47 | Missouri Flat Rd | 100 ft S of China Garden Rd | 2A | E | 1,260 | 1,610 | D | E | N |
|  | Green Valley $R^{b}$ | 200 ft E of County line | 2A | E | 1,840 | 2,080 | F | F | Y |
| 226 | White Rock Rd | At County Line | 2A | E | 900 | 1,810 | D | F | Y |
| Source: Kimley-Horn and Associates, 2014 <br> aRoadway Classification - See Table 3.9-3 for additional detail. <br> ${ }^{\mathrm{b}}$ Traffic Volumes for this roadway are estimates based on adjacent roadway volumes |  |  |  | $\begin{aligned} & 6 \mathrm{AD}= \\ & 2 \mathrm{~F}= \\ & 2 \mathrm{FA}= \\ & 3 \mathrm{~F}= \\ & 3 \mathrm{FA}= \\ & 4 \mathrm{~F}= \end{aligned}$ | Six-Lan <br> wo Free <br> Two Fre <br> hree Fre <br> Three F <br> our Free | Arterial, way Lanes way Lan way Lan eeway La way Lane | Divide <br> (3) <br> es + Au <br> (3) <br> nes + A <br> (3) | xiliary L <br> xiliary | (3) <br> (3) |

Under this scenario, three County-maintained roadway segments (IDs 44, 151, 226) are anticipated to operate at and unacceptable LOS F in the PM peak hour. These segments are not listed in Table D.7-2as one of the roadway segments allowed to operate at LOS F by the General Plan. For this reason, the decrease in level of service on these segments under Study Scenario 5 would be significant.

Table D.8-7. Study Scenario 6 (Cumulative Conditions in 2035)-2035 Road Network + Project (TGPA/ZOU Buildout Assumption) with 2035 CIP/ RTP Improvements

| ID | Roadway | Segment | Classa - <br> Scenario 3, <br> 4, and 6 | Minimum LOS | Scenario 6 |  |  |  | Impact? <br> ( $\mathrm{Y} / \mathrm{N}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Volume |  | $\begin{gathered} 2010 \\ \text { Method LOS } \end{gathered}$ |  |  |
|  |  |  |  |  | AM Peak Hr | PM Peak Hour | AM Peak Hr | PM Peak Hour |  |
| 5 | $\begin{aligned} & \text { U.S. Highway } \\ & 50-\mathrm{EB} \text { GP } \end{aligned}$ | W of Bass <br> Lake Rd | 2FA | D/ Eb | 2,530 | 4,700 | B | E | Y |
| 9 | $\begin{aligned} & \text { U.S. Highway } \\ & 50-\mathrm{EB} \text { GP } \end{aligned}$ | W of Cameron Park | 2F | Ec | 2,280 | 3,600 | C | E | N |
| 13 | U.S. Highway <br> 50-EB GP | W of Ponderosa | 2F | Ec | 2,660 | 3,810 | C | E | N |
| 14 | U.S. Highway <br> 50-WB GP | W of Ponderosa | 2F | Ec | 3,900 | 3,500 | E | D | N |
| 32 | $\begin{aligned} & \text { Cameron Park } \\ & \text { Dr } \\ & \hline \end{aligned}$ | 200 ft N of Oxford Rd | 2A | E | 1,500 | 1,840 | D | F | Y |
| 38 | El Dorado Hills Bl | 300 ft S of Francisco Dr | 2A | E | 1,230 | 1,540 | D | E | N |
| 46 | Missouri Flat Rd | 100 ft S of China Garden Rd | 2A | E | 1,240 | 1,450 | D | D | N |
| 48 | Missouri Flat Rd | 400 yds N of Forni Rd | 4AD | $\mathrm{F}^{\text {d }}$ | 2,510 | 3,310 | D | F | $\mathrm{N}^{\mathrm{d}}$ |
| 55 | $\begin{aligned} & \text { Cameron Park } \\ & \text { Dr } \end{aligned}$ | 100 ft N of <br> Robin Ln | 2A | $\mathrm{F}^{\text {d }}$ | 1,170 | 1,730 | D | F | $\mathrm{N}^{\mathrm{d}}$ |
| 194 | Pleasant Valley Rd | 200 yds E of SR 49 (E) | 2A | E | 1,300 | 1,560 | D | E | N |

Source: Kimley-Horn and Associates 2014.
${ }^{\text {a }}$ Roadway Classification - See Table D.7-1 for additional detail.
2R, W20, W18 = Minor Two-Lane Highway
2U = Major Two-Lane Highway
2A = Two-Lane Arterial
4AU = Four-Lane Arterial, Undivided

4AD = Four Lane Arterial, Divided
6AD = Six-Lane Arterial, Divided
2F = Two Freeway Lanes (3)
2FA = Two Freeway Lanes + Auxiliary Lane
(3)

3F= Three Freeway Lanes (3)
3FA= Three Freeway Lanes + Auxiliary Lane
(3)

4F= Four Freeway Lanes (3)
${ }^{\mathrm{b}}$ The minimum acceptable operations is LOS D on this segment of US Highway 50 according to County standards. The Caltrans Concept LOS is LOS E. Impacts are identified based on the most stringent threshold (LOS D).
${ }^{\text {c }}$ These minimum LOS values represent the concept LOS from the Caltrans US 50 TCR/ CSMP because the model includes the 20-year concept facility improvements shown in Table D.7-3.
${ }^{d}$ Not considered an impact because this roadway segment is included in the list of roadway segments allowed to operate at LOS F as shown in Table D.7-2.
Note: "GP" stands for General Purpose Lanes (includes auxiliary lanes)

Two roadway segments (IDs 5 and 32) would exceed the minimum LOS. This includes one-segment of U.S. Highway 50 (ID 5) that would operate at LOS E. LOS E would exceed the County's LOS standards for rural regions, although it does not exceed Caltrans' Concept LOS. The decrease to LOS E on this segment of U.S. Highway 50 for the 2035 planning period would be a significant impact. The decrease in service to LOS F on Cameron Park Drive (ID 32) would be a significant impact. Missouri Flat Road (ID 49) and Cameron Park Road (ID 56) however, are allowed to operate at LOS F per General Plan Policy TC-Xa and there would be no significant impact on those segments.

Table D.8-8. LOS Summary Table


| ID | Roadway | Segment | Class - <br> Scenario Exist, 2, and 5 | Class - <br> Scenario 3, <br> 4 , and 6 | Existing Conditions (2010) |  |  |  | Scenario 2 |  |  |  | Scenario 3 |  |  |  | Scenario 4 |  |  |  | Scenario 5 |  |  |  | Scenario 6 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Volume |  | $\begin{gathered} 2010 \text { Method } \\ \text { LOS } \\ \hline \end{gathered}$ |  | Volume |  | $\begin{gathered} 2010 \text { Method } \\ \text { LOS } \\ \hline \end{gathered}$ |  | Volume |  | $\begin{gathered} 2010 \text { Method } \\ \text { LOS } \\ \hline \end{gathered}$ |  | Volume |  | $\begin{gathered} \text { 2010 Method } \\ \text { LOS } \\ \hline \end{gathered}$ |  | Volume |  | $\begin{gathered} 2010 \text { Method } \\ \text { LOS } \\ \hline \end{gathered}$ |  | Volume |  | $\begin{aligned} & \text { 2010 Method } \\ & \text { LOS } \end{aligned}$ |  |
|  |  |  |  |  | AM | PM |
|  |  |  |  |  | Peak Hour |
|  |  |  |  |  | Hour |
| 49 | Missouri Flat Rd | 400 yds N of Forni Rd | 4AD | 4AD | 2,040 | 2,650 | D | D | 2,250 | 2,910 | D | D | 2,390 | 3,120 | D | D | 2,400 | 3,120 | D | D | 2,020 | 2,640 | D | D | 2,510 | 3,310 | D | F |
| 50 | Missouri Flat Rd | 100 ftS of Plaza Dr | 4AD | 4 AD | 1,340 | 1,930 | C | D | 1,520 | 2,130 | C | D | 1,490 | 2,130 | C | D | 1,480 | 2,130 | C | D | 1,350 | 1,910 | C | D | 1,560 | 2,240 | C | D |
| 51 | Missouri Flat Rd | 100 ft Nof Plaza Dr | 4 AD | 4AD | 590 | 650 | C | C | 760 | 850 | C | C | 730 | 850 | C | C | 730 | 850 | C | C | 590 | 650 | C | C | 800 | 960 | C | C |
| 52 | Missouri Flat Rd | 300 ftS of El Dorado Rd | 2A | 2A | 640 | 790 | c | c | 740 | 990 | c | D | 620 | 740 | c | c | 620 | 730 | C | c | 640 | 800 | c | c | 660 | 860 | c | D |
| 53 | North Shingle Rd | 400 yds E of Ponderosa Rd | 2 A | 2 A | 510 | 650 | C | C | 820 | 1,060 | C | D | 750 | 930 | C | D | 760 | 930 | C | D | 490 | 630 | C | C | 920 | 1,120 | D | D |
| 54 | North Shingle Rd | 100 ftS of Green Valley Rd | W22 | W22 | 380 | 500 | c | C | 580 | 760 | C | C | 550 | 690 | C | C | 550 | 690 | C | C | 370 | 480 | B | C | 660 | 810 | C | D |
| 55 | South Shingle Rd | 100 ftS of Mother Lode Dr | 2A | 2A | 720 | 1,030 | c | D | 1,230 | 1,590 | D | E | 960 | 1,300 | D | D | 960 | 1,290 | D | D | 770 | 1,070 | C | D | 1,110 | 1,530 | D | D |
| 56 | Cameron Park Dr | 100 ft N of Robin Ln | 2 A | 2 A | 520 | 820 | C | C | 1,060 | 1,610 | D | E | 930 | 1,430 | D | D | 930 | 1,420 | D | D | 540 | 860 | C | D | 1,170 | 1,730 | D | F |
| 57 | Cameron Park Dr | 100 ft of Coach Ln | 4AD | 4AD | 1,370 | 2,100 | C | D | 2,180 | 2,950 | D | D | 1,960 | 2,860 | D | D | 1,970 | 2,860 | D | D | 1,400 | 2,130 | C | D | 2,250 | 3,050 | D | D |
| 58 | Cameron Park Dr | 200 yds N of Mira Loma Dr | 2A | 2A | 920 | 1,240 | D | D | 1,150 | 1,450 | D | D | 1,090 | 1,420 | D | D | 1,080 | 1,420 | D | D | 990 | 1,270 | D | D | 1,170 | 1,480 | D | D |
| 59 | Cameron Park Dr | 200 yds Sof Green Valley Rd | 2 A | 2 A | 680 | 810 | C | C | 860 | 960 | D | D | 800 | 930 | C | D | 800 | 930 | C | D | 710 | 830 | C | C | 860 | 950 | D | D |
| 60 | Country Club Dr | 0.1 mi E of Merrychase Dr | 2A | 2A | 350 | 230 | C | C | 570 | 460 | C | C | 520 | 310 | C | C | 520 | 310 | C | C | 350 | 230 | C | C | 650 | 510 | C | C |
| 61 | Durock Rd | 50 ftS of Robin Ln | 2A | 2A | 380 | 580 | C | C | 740 | 1,030 | C | D | 640 | 940 | C | D | 640 | 930 | c | D | 390 | 600 | C | C | 810 | 1,110 | C | D |
|  | Latrobe Rd Connection | South of White Rock Road |  | 4 AD |  |  |  |  |  |  | - | - | 1,340 | 1,460 | C | C | 1,320 | 1,440 | C | C |  |  | - |  | 1,790 | 1,890 | C | D |
| 62 | Palmer Dr | 100 ft E of Cameron Park Dr | 2 A | 2A | 570 | 820 | C | C | 800 | 1,130 | C | D | 730 | 1,030 | C | D | 730 | 1,030 | C | D | 570 | 820 | C | C | 820 | 1,150 | C | D |
|  | Saratoga Way | West of El Dorado Hills Blvd |  | 4AD |  |  |  |  |  |  |  |  | 2,240 | 2,360 | D | D | 2,220 | 2,370 | D | D |  |  |  |  | 2,470 | 2,580 | D | D |
| 63 | Serrano Pkwy | 450 ft E of Silva Valley Pkwy | 4 AD | 4AD | 1,080 | 930 | C | C | 1,460 | 1,170 | C | C | 1,130 | 1,020 | C | C | 1,130 | 1,020 | C | C | 1,040 | 970 | C | C | 1,290 | 1,210 | C | C |
| 64 | Silva Valley Pkwy | 100 ft S of Serrano Pkwy | 4AD | 4AD | 850 | 640 | C | C | 1,370 | 1,220 | C | C | 1,620 | 1,360 | C | c | 1,620 | 1,360 | C | C | 890 | 800 | C | C | 1,760 | 1,550 | C | C |
| 65 | Silva Valley Pkwy | 100 ft N of Serrano Pkwy | 4 AD | 4AD | 1,270 | 900 | c | C | 1,640 | 1,250 | C | C | 1,600 | 1,180 | C | c | 1,590 | 1,170 | C | c | 1,340 | 1,000 | C | C | 1,720 | 1,310 | C | c |
| 66 | Silva Valley Pkwy | 100 ftS of Harvard Wy | 4AD | 4 AD | 1,050 | 860 | C | C | 1,340 | 1,170 | C | C | 1,280 | 1,050 | C | C | 1,270 | 1,040 | C | C | 1,110 | 970 | C | C | 1,350 | 1,140 | C | C |
| 67 | Silva Valley Pkwy | 100 ft of Harvard Wy | 2A | 2A | 790 | 630 | C | C | 940 | 820 | D | C | 1,000 | 720 | D | C | 990 | 710 | D | C | 760 | 670 | C | C | 1,070 | 790 | D | C |
| 68 | Silva Valley Pkwy | 100 ftS of Green Valley Rd | 2 A | 2A | 590 | 530 | C | C | 770 | 760 | C | C | 720 | 570 | C | C | 720 | 560 | C | C | 610 | 620 | C | C | 800 | 630 | C | C |
| 69 | Sophia Pkwy | 200 ftS of Green Valley Rd | 2 A | 2 A | 450 | 590 | C | C | 710 | 870 | C | D | 320 | 530 | C | C | 320 | 530 | C | C | 640 | 750 | C | C | 380 | 650 | C | C |
| 70 | White Rock Rd | 100 ft E of Latrobe Rd | 4AD | 6AD | 760 | 1,380 | C | C | 1,090 | 1,900 | C | D | 1,110 | 1,940 | C | C | 1,090 | 1,900 | C | C | 740 | 1,600 | C | C | 1,520 | 2,300 | C | C |
| 71 | Barkley Rd | 50 ft Nof Carson Rd | 2 A | 2A | 70 | 80 | C | c | 80 | 90 | C | C | 80 | 90 | C | c | 80 | 90 | C | C | 70 | 80 | C | c | 80 | 100 | C | C |
| 72 | Bedford Av | At City Limits | 2A | 2A | 30 | 40 | C | C | 40 | 50 | C | C | 40 | 50 | C | c | 40 | 50 | C | C | 30 | 40 | C | C | 40 | 50 | C | C |
| 73 | Big Cut Rd | 100 ft of Pleasant Vly Rd | W18 | W18 | 70 | 90 | B | B | 210 | 260 | B | B | 160 | 200 | B | B | 160 | 200 | B | B | 80 | 90 | B | B | 240 | 260 | B | B |
| 74 | Bucks Bar Rd | 50 ftS of Pleasant Vly Rd | W20 | W20 | 380 | 390 | C | c | 470 | 510 | C | c | 450 | 470 | C | c | 450 | 470 | c | C | 360 | 360 | B | B | 500 | 530 | C | C |
| 75 | Bucks Bar Rd | 300 ft N of Mt Aukum Rd | W18 | W18 | 300 | 290 | B | B | 380 | 400 | C | C | 360 | 370 | B | C | 360 | 380 | B | C | 270 | 270 | B | B | 410 | 430 | C | C |
| 76 | China Garden Rd | 150 ft N of SR 49 | 2A | 2A | 80 | 80 | C | C | 90 | 80 | C | C | 90 | 80 | C | C | 90 | 80 | C | C | 80 | 80 | C | C | 90 | 90 | C | C |
| 77 | China Garden Rd | 200 yds E of Missouri Flat Rd | 2 A | 2A | 240 | 330 | C | C | 410 | 610 | c | C | 90 | 150 | C | c | 90 | 260 | C | c | 220 | 300 | C | C | 170 | 300 | C | C |
| 78 | El Dorado Rd | 200 yds N of Pleasant Vly Rd | W22 | W22 | 210 | 250 | B | B | 390 | 440 | C | C | 330 | 390 | B | C | 340 | 390 | B | C | 220 | 250 | B | B | 370 | 440 | B | C |
| 79 | Enterprise Dr | 100 ft E of Forni Rd | 2A | 2A | 220 | 320 | C | C | 240 | 360 | C | C | 220 | 320 | C | C | 210 | 320 | C | C | 220 | 320 | C | C | 220 | 330 | C | C |
| 80 | Fairplay Rd | 100 ftS of Mt Aukum Rd | W20 | W20 | 150 | 170 | B | B | 180 | 200 | B | B | 170 | 190 | B | B | 170 | 190 | B | B | 140 | 160 | B | B | 190 | 220 | B | B |
| 81 | Forebay Rd | 100 ft Nof Pony Express Tr | 2A | 2A | 120 | 170 | C | C | 150 | 210 | C | C | 140 | 190 | C | C | 140 | 190 | C | C | 120 | 170 | C | C | 160 | 210 | C | C |
| 82 | Forni Rd | 200 ft N of SR 49 | 2A | 2A | 340 | 330 | C | C | 350 | 350 | c | C | 350 | 350 | C | c | 350 | 350 | C | C | 320 | 320 | C | C | 350 | 360 | C | C |
| 83 | Forni Rd | 300 ft W of Missouri Flat Rd | 2A | 2A | 500 | 820 | C | C | 520 | 840 | c | C | 420 | 720 | C | c | 420 | 710 | C | c | 510 | 820 | c | c | 420 | 720 | C | C |
| 84 | Forni Rd | 30 ft W of Arroyo Vista Wy | 2A | 2A | 100 | 150 | C | C | 110 | 160 | C | C | 110 | 170 | C | C | 110 | 170 | C | C | 100 | 150 | C | C | 110 | 170 | C | C |
| 85 | Forni Rd | W of Placerville Dr at City Limits | W20 | W20 | 70 | 120 | B | B | 240 | 190 | B | B |  | - | B | B | - | - | B | B | 70 | 110 | B | B | 20 | - | B | B |
| 86 | French Creek Rd | 300 ftS of Mother Lode Dr | 2A | 2A | 200 | 240 | C | C | 250 | 280 | C | C | 220 | 230 | C | C | 220 | 230 | C | C | 200 | 240 | C | C | 260 | 260 | C | C |
| 87 | Garden Valley Rd | 300 ft N of SR 193 | W20 | W20 | 40 | 40 | B | B | 50 | 60 | B | B | 50 | 50 | B | B | 50 | 50 | B | B | 40 | 40 | B | B | 50 | 60 | B | B |
| 88 | Garden Valley Rd | 0.45 mi S of Marshall Rd | W20 | W20 | 140 | 120 | B | B | 150 | 130 | B | B | 150 | 120 | B | B | 150 | 120 | B | B | 140 | 120 | B | B | 150 | 130 | B | B |
| 89 | Greenwood Rd | 100 ft W of Marshall Rd | 2A | 2A | 80 | 110 | C | C | 170 | 200 | C | C | 130 | 160 | c | c | 130 | 160 | C | c | 70 | 110 | C | C | 170 | 210 | C | C |
| 90 | Greenwood Rd | 0.03 mi S of SR 193 | 2 A | 2A | 60 | 90 | C | C | 60 | 80 | C | C | 60 | 90 | C | C |
| 91 | Harvard Wy | 0.15 mi E of El Dorado Hills Bl | 4AU | 4 AU | 930 | 730 | C | c | 1,220 | 890 | C | c | 1,010 | 840 | C | c | 1,010 | 840 | C | C | 960 | 760 | c | c | 1,120 | 890 | C | c |
| 92 | Harvard Wy | 200 ft W of Silva Valley Pkwy | 4AU | 4 AU | 820 | 560 | C | C | 1,080 | 740 | C | C | 890 | 590 | C | C | 880 | 590 | C | C | 870 | 600 | C | C | 950 | 640 | C | C |
| 93 | Icehouse Rd | 300 ft N of US 50 | 2A | 2A | 80 | 130 | C | C | 70 | 110 | C | C | 80 | 120 | C | C | 80 | 120 | c | c | 60 | 100 | c | c | 80 | 120 | c | c |
| 94 | Lime Kiln Rd | 100 ft E of China Garden Rd | 2A | 2A | 130 | 230 | C | C | 290 | 550 | C | C | 30 | 70 | c | c | 30 | 150 | c | C | 110 | 200 | c | c | 70 | 180 | C | C |
| 95 | Meder Rd | 300 ft E of Cameron Park Dr | W22 | W22 | 590 | 580 | C | C | 840 | 950 | D | D | 670 | 760 | C | C | 670 | 760 | C | C | 600 | 590 | C | C | 860 | 1,010 | D | D |
| 96 | Meder Rd | 200 yds W of Ponderosa Rd | W22 | W22 | 490 | 510 | C | C | 570 | 660 | C | C | 520 | 540 | C | C | 520 | 540 | C | C | 490 | 510 | C | C | 550 | 600 | C | C |
| 97 | Mosquito Rd | 300 ftS of Union Ridge Rd | 2A | 2A | 150 | 150 | C | c | 330 | 350 | C | C | 270 | 280 | C | c | 270 | 280 | C | C | 140 | 140 | C | c | 350 | 360 | C | C |
| 98 | Mosquito Rd | At American River Br | W18 | W18 | 100 | 100 | B | B | 160 | 170 | B | B | 140 | 140 | B | B | 140 | 140 | B | B | 80 | 90 | B | B | 180 | 180 | B | B |
| 99 | Newtown Rd | 200 yds N of Pleasant Vly Rd | 2A | 2A | 250 | 240 | C | C | 370 | 360 | c | c | 310 | 320 | C | C | 310 | 310 | C | C | 230 | 240 | c | C | 380 | 360 | C | C |



|  | Roadway | Segment |  | Class - <br> Scenario 3, <br> 4, and 6 | Existing Conditions (2010) |  |  |  | Scenario 2 |  |  |  | Scenario 3 |  |  |  | Scenario 4 |  |  |  | Scenario 5 |  |  |  | Scenario 6 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID |  |  |  |  | Volume |  | $\begin{aligned} & \text { 2010 Method } \\ & \text { LOS } \end{aligned}$ |  | Volume |  | $\begin{aligned} & \text { 2010 Method } \\ & \text { LOS } \end{aligned}$ |  | Volume |  | $\begin{aligned} & \text { 2010 Method } \\ & \text { LOS } \end{aligned}$ |  | Volume |  | $\begin{aligned} & \text { 2010 Method } \\ & \text { LOS } \end{aligned}$ |  | Volume |  | $\begin{aligned} & 2010 \text { Method } \\ & \text { LOS } \end{aligned}$ |  | Volume |  | 2010 Method LOS |  |
|  |  |  |  |  | AM | PM |
|  |  |  |  |  | Peak |
|  |  |  |  |  | Hour |
| 152 | Green Valley Rd | 300 ft W of Silva Valley Pkwy | 2A | 4 AU | 970 | 1,120 | D | D | 1,120 | 1,360 | D | D | 1,100 | 1,330 | C | C | 1,090 | 1,320 | C | c | 1,000 | 1,250 | D | D | 1,280 | 1,440 | C | C |
| 153 | Green Valley Rd | 200 ft W of Bass Lake Rd | 2A | 2A | 1,200 | 980 | D | D | 1,400 | 1,240 | D | D | 1,120 | 1,020 | D | D | 1,130 | 1,010 | D | D | 1,240 | 1,040 | D | D | 1,230 | 1,090 | D | D |
| 154 | Green Valley Rd | 300 ft W of Cameron Park Dr | 2A | 2A | 930 | 940 | D | D | 1,340 | 1,340 | D | D | 1,040 | 1,120 | D | D | 1,040 | 1,110 | D | D | 970 | 990 | D | D | 1,230 | 1,270 | D | D |
| 155 | Green Valley Rd | 300 ft o of La Crescenta Dr | W22 | 2 A | 610 | 630 | C | C | 930 | 980 | D | D | 710 | 730 | C | C | 700 | 730 | C | C | 630 | 640 |  | C | 800 | 820 | C | C |
| $\underline{156}$ | Green Valley Rd | 500 ft E of Deer Valley Rd (E) | W18 | 2A | 360 | 420 | B | C | 580 | 670 | C | C | 340 | 400 | c | c | 340 | 400 | c | C | 370 | 430 | C | c | 420 | 480 | c | C |
| 157 | Green Valley Rd | 300 ft W of Lotus Rd | W18 | 2A | 570 | 650 | C | C | 990 | 1,170 | D | D | 760 | 870 | C | D | 760 | 870 | C | D | 560 | 650 | C | C | 940 | 1,070 | D | D |
| 158 | Green Valley Rd | 100 ft W of Greenstone Rd | W20 | 2A | 300 | 360 | B | B | 470 | 590 | C | c | 390 | 460 | C | C | 390 | 460 | C | c | 310 | 360 | B | B | 430 | 520 | C | c |
| 159 | Green Valley Rd | 400 ft W of Campus Dr | W20 | 2A | 370 | 420 | B | C | 450 | 540 | C | C | 420 | 480 | C | C | 420 | 480 | C | C | 380 | 430 | C | C | 430 | 540 | C | C |
| 160 | Green Valley Rd | 200 ft W of Missouri Flat Rd | W20 | 2A | 710 | 760 | C | C | 800 | 880 | D | D | 770 | 820 | C | C | 760 | 820 | C | C | 720 | 770 | C | C | 780 | 880 | C | D |
| 161 | Green Valley Rd | 100 ft W of Weber Creek Br | W18 | 2A | 230 | 310 | B | B | 300 | 410 | B | C | 290 | 330 | C | c | 290 | 330 | C | c | 230 | 320 | B | B | 310 | 390 | c | C |
| 162 | Greenstone Rd | 300 ft Nof Mother Lode Dr | W18 | 2A | 80 | 110 | B | B | 120 | 160 | B | B | 110 | 130 | C | C | 110 | 130 | C | C | 80 | 110 | B | B | 120 | 160 | C | C |
| 163 | Greenstone Rd | 0.20 mi N of US 50 | 2A | 2A | 210 | 220 | C | C | 350 | 400 | C | c | 320 | 340 | c | c | 320 | 340 | c | c | 210 | 220 | C | C | 360 | 360 | C | C |
| 164 | Grizzly Flat Rd | 200 yds E of Mt Aukum Rd | 2A | 2A | 160 | 190 | c | c | 230 | 260 | c | c | 210 | 240 | c | c | 210 | 240 | c | c | 150 | 170 | C | c | 240 | 270 | c | c |
| 165 | Lake Hills Dr | 100 ft N f Salmon Falls Rd | 2A | 2A | 250 | 260 | C | c | 260 | 270 | C | c | 260 | 280 | C | c | 260 | 280 | C | c | 240 | 260 | C | c | 260 | 270 | c | C |
| 166 | Latrobe Rd | 250 ft of County Line | 2A | 2A | 240 | 300 | C | C | 540 | 650 | C | C | 260 | 300 | C | C | 260 | 300 | C | C | 450 | 480 | C | C | 380 | 400 | C | C |
| 167 | Latrobe Rd | 1.5 miN of S Shingle Rd | 2A | 2A | 250 | 310 | C | C | 620 | 710 | C | C | 300 | 340 | C | C | 290 | 340 | C | C | 490 | 550 | C | C | 430 | 440 | C | C |
| 168 | Latrobe Rd | At Deer Creek Bridge | 2A | 2A | 330 | 390 | c | c | 640 | 730 | c | c | 360 | 390 | c | c | 350 | 390 | c | c | 540 | 570 | c | c | 480 | 490 | c | C |
| 169 | Latrobe Rd | 100 ftS of Investment Bl | 2A | 2A | 380 | 420 | c | c | 780 | 870 | C | D | 470 | 490 | C | c | 460 | 490 | C | c | 620 | 660 | C | c | 620 | 620 | c | C |
| 170 | Latrobe Rd | 100 ft N of Investment Bl | 2A | 2A | 650 | 710 | c | c | 970 | 1,080 | D | D | 730 | 770 | C | c | 720 | 770 | C | c | 890 | 960 | D | D | 870 | 880 | D | D |
| 171 | Latrobe Rd | 100 ft N of Golden Foothill Pw | 4AD | 4AD | 1,750 | 1,740 | C | C | 2,570 | 2,610 | D | D | 1,320 | 1,280 | c | c | 1,320 | 1,280 | c | C | 1,970 | 1,950 | D | D | 1,490 | 1,440 | C | C |
| 172 | Lotus Rd | 300 ft N of Green Valley Rd | 2A | 2A | 470 | 570 | C | C | 1,010 | 1,220 | D | D | 770 | 930 | C | D | 770 | 930 | C | D | 450 | 560 | C | C | 1,010 | 1,190 | D | D |
| 173 | Lotus Rd | 300 ftS of Thompson Hill Rd | 2A | 2A | 310 | 430 | C | C | 530 | 680 | C | C | 390 | 540 | C | C | 390 | 540 | C | C | 290 | 410 | C | C | 530 | 670 | C | C |
| $\underline{174}$ | Lotus Rd | 0.25 mi S of SR 49 | 2A | 2A | 260 | 460 | C | C | 480 | 710 | C | C | 350 | 570 | C | C | 350 | 570 | C | C | 250 | 440 | C | C | 490 | 700 | C | C |
| 175 | Luneman Rd | 100 ft W of Lotus Rd | 2A | 2A | 270 | 180 | c | c | 330 | 260 | c | c | 310 | 230 | c | c | 310 | 230 | c | c | 270 | 180 | c | c | 330 | 260 | c | c |
| 176 | Marshall Rd | 200 yds E of SR 49 | 2A | 2A | 260 | 300 | c | C | 370 | 410 | C | c | 310 | 350 | c | c | 310 | 350 | C | C | 250 | 290 | C | c | 380 | 410 | C |  |
| 177 | Marshall Rd | 300 ft E of Garden Valley Rd | 2A | 2A | 430 | 370 | c | c | 560 | 500 | c | c | 490 | 440 | C | c | 490 | 440 | C | c | 410 | 360 | C | c | 580 | 510 | C | C |
| 178 | Marshall Rd | 300 yds S of Lower Main St | 2A | 2A | 40 | 50 | c | c | 90 | 100 | c | c | 60 | 70 | c | c | 60 | 70 | c | c | 40 | 50 | C | c | 110 | 110 | C | C |
| 179 | Missouri Flat Rd | 300 ft N of El Dorado Rd | 2A | 2A | 650 | 620 | C | C | 730 | 740 | c | c | 690 | 680 | c | C | 690 | 680 | C | C | 650 | 630 | C | c | 720 | 750 | C | C |
| 180 | Mormon Emigrant Tr | 100 ft E of Sly Park Rd | 2A | 2A | 60 | 90 | C | c | 110 | 150 | C | c | 100 | 140 | c | C | 100 | 140 | C | C | 60 | 90 | C | C | 140 | 180 | C | C |
| 181 | Mosquito Rd | At City Limits | 2A | 2A | 270 | 310 | C | C | 490 | 550 | c | c | 410 | 460 | C | C | 410 | 460 | C | C | 260 | 300 | C | C | 510 | 570 | C | C |
| 182 | Mother Lode Dr | 200 ft W of Sunset Ln | 2A | 2A | 910 | 1,100 | D | D | 1,140 | 1,330 | D | D | 1,050 | 1,260 | D | D | 1,060 | 1,260 | D | D | 940 | 1,130 | D | D | 1,130 | 1,320 | D | D |
| 183 | Mother Lode Dr | 400 yds W of Pleasant Valley Rd | 2A | 2A | 570 | 740 | C | C | 910 | 1,120 | D | D | 730 | 910 | C | D | 750 | 920 | C | D | 590 | 750 | C | C | 870 | 1,060 | D | D |
| 184 | Mother Lode Dr | 0.43 mi E of Pleasant Valley Rd | 2A | 2A | 240 | 320 | C | C | 280 | 360 | C | C | 260 | 350 | C | C | 260 | 350 | C | C | 240 | 330 | C | C | 280 | 370 | C | C |
| 185 | Mt Aukum Rd | 0.25 miN of County Line | 2A | 2A | 120 | 160 | C | C | 130 | 160 | C | C | 150 | 190 | C | C | 150 | 190 | C | C | 120 | 150 | C | C | 150 | 190 | C | C |
| ${ }^{186}$ | Mt Aukum Rd | 300 ftS of Bucks Bar Rd | 2A | 2A | 300 | 290 | c | c | 370 | 380 | c | c | 350 | 360 | c | c | 350 | 360 | c | c | 280 | 280 | c | c | 400 | 410 | c | c |
| 187 | Mt Aukum Rd | 300 ftS of Pleasant Vly Rd | 2A | 2A | 200 | 270 | c | c | 290 | 340 | c | c | 260 | 330 | c | c | 260 | 330 | c | c | 190 | 270 | c | c | 300 | 370 | c | c |
| 188 | Mt Murphy Rd | 50 ftS of Marshall Rd | 2A | 2A | 90 | 100 | c | c | 140 | 160 | c | c | 110 | 130 | c | c | 110 | 130 | c | c | 80 | 90 | c | c | 140 | 160 | C | C |
| 189 | Mt Murphy Rd | 200 yds N of SR 49 | 2A | 2A | 20 | 30 | c | C | 110 | 130 | C | c | 60 | 80 | c | c | 60 | 80 | C | C | 20 | 30 | C | c | 110 | 130 | C | C |
| 190 | Newtown Rd | 200 yds N of Pioneer Hill Rd | 2A | 2A | 200 | 220 | C | C | 330 | 350 | C | c | 260 | 280 | C | C | 260 | 280 | C | c | 180 | 210 | C | C | 340 | 350 | C | C |
| 191 | Newtown Rd | 100 ft E of Broadway | 2A | 2A | 280 | 320 | C | C | 410 | 450 | C | C | 340 | 380 | C | C | 340 | 380 | C | C | 260 | 310 | C | C | 420 | 450 | C | C |
| 192 | Old Frenchtown Rd | 400 yds S of Mother Lode Dr | 2A | 2A | 90 | 100 | C | C | 130 | 150 | C | C | 110 | 130 | C | C | 110 | 130 | C | C | 90 | 110 | C | C | 130 | 150 | C | C |
| 193 | Omo Ranch Rd | 100 ftE of Mt Aukum Rd | 2A | 2A | 60 | 80 | c | C | 70 | 80 | C | C | 70 | 90 | C | C | 70 | 90 | C | C | 60 | 70 | C | C | 70 | 90 | C | C |
| 194 | Oxford Rd | 50 ftE of Salida Wy | 2A | 2A | 290 | 420 | C | C | 710 | 850 | C | D | 390 | 640 | c | c | 390 | 630 | c | C | 290 | 440 | C | c | 620 | 850 | C | D |
| 195 | Pleasant Valley Rd | 200 yds E of Mother Lode Dr | 2A | 2A | 440 | 560 | c | c | 740 | 900 | c | D | 580 | 710 | c | c | 600 | 720 | c | c | 450 | 570 | c | c | 700 | 830 | c | C |
| 196 | Pleasant Valley Rd | 200 yds E of SR 49 (E) | 2A | 2A | 1,030 | 1,230 | D | D | 1,240 | 1,500 | D | D | 1,200 | 1,440 | D | D | 1,200 | 1,430 | D | D | 1,010 | 1,210 | D | D | 1,300 | 1,560 | D |  |
| 197 | Pleasant Valley Rd | 300 ft W of Oak Hill Rd | 2A | 2A | 860 | 980 | D | D | 940 | 1,090 | D | D | 930 | 1,060 | D | D | 930 | 1,060 | D | D | 830 | 950 | C | D | 970 | 1,130 | D | D |
| 198 | Pleasant Valley Rd | 100 ft E of Cedar Ravine Rd | 2A | 2A | 800 | 830 | C | c | 1,020 | 1,080 | D | D | 950 | 990 | D | D | 940 | 990 | D | D | 780 | 800 | c | c | 1,060 | 1,120 | D | D |
| 199 | Pleasant Valley Rd | 0.10 mi E of Bucks Bar Rd | 2A | 2A | 530 | 450 | C | C | 670 | 580 | C | C | 600 | 530 | C | C | 610 | 530 | C | C | 540 | 450 | C | C | 670 | 600 | C | C |
| 200 | Pleasant Valley Rd | 0.40 mi E of Newtown Rd | 2A | 2A | 410 | 450 | c | c | 550 | 580 | C | c | 500 | 530 | c | c | 500 | 530 | C | c | 400 | 440 | c | c | 570 | 600 | c | C |
| 201 | Ponderosa Rd | 300 ft N of Wild Chaparral Dr | 2A | 2A | 680 | 600 | c | C | 860 | 760 | D | c | 810 | 660 | c | c | 810 | 660 | c | c | 690 | 600 | c | c | 860 | 720 | D | C |
| 202 | Pony Express Tr | 200 yds E of Carson Rd | 2A | 2A | 180 | 240 | c | C | 200 | 270 | C | c | 200 | 260 | c | c | 200 | 260 | c | C | 170 | 240 | C | c | 200 | 270 | C | C |
| 203 | Pony Express Tr | 300 ftE of Gilmore Rd | 2A | 2A | 280 | 420 | c | c | 350 | 500 | c | c | 330 | 480 | c | c | 330 | 480 | c | c | 270 | 420 | c | c | 360 | 510 | c | c |
| 204 | Pony Express Tr | 300 ft W of Forebay Rd | 2A | 2A | 350 | 510 | C | C | 370 | 530 | C | c | 370 | 530 | C | C | 370 | 530 | C | C | 350 | 520 | C | C | 370 | 540 | C | C |


| ID | Roadway | Segment | Class - <br> Scenario <br> Exist, 2, <br> and 5 | Class - <br> Scenario 3, <br> 4 , and 6 | Existing Conditions (2010) |  |  |  | Scenario 2 |  |  |  | Scenario 3 |  |  |  | Scenario 4 |  |  |  | Scenario 5 |  |  |  | Scenario 6 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Volume |  | $\begin{aligned} & \text { 2010 Method } \\ & \text { LOS } \end{aligned}$ |  | Volume |  | $\begin{gathered} \text { 2010 Method } \\ \text { LOS } \end{gathered}$ |  | Volume |  | 2010 MethodLOS |  | Volume |  | 2010 MethodLOS |  | Volume |  | $\begin{aligned} & \text { 2010 Method } \\ & \text { LOS } \end{aligned}$ |  | Volume |  | $\begin{gathered} \text { 2010 Method } \\ \text { LOS } \\ \hline \end{gathered}$ |  |
|  |  |  |  |  | AM | PM |
|  |  |  |  |  | Peak Hour | Peak Hour | Peak Hour | Peak <br> Hour | Peak |
| 205 | Salmon Falls Rd | 50 ft of Malcolm-Dixon Rd |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 206 | Salmon Falls Rd | ${ }_{\text {At }}$ New Y York Creek Bridge | 2A | 2 A | 200 | 220 | ${ }_{\text {c }}$ | ${ }_{\text {c }}$ | ${ }_{4} 80$ | 790 | D | C | 280 | 810 | C | C | 280 | 810 | C | C | 650 | ${ }_{620} 210$ | C | C | ${ }_{4}^{920}$ | ${ }_{4} 940$ | D | D |
| 207 | Salmon Falls Rd | 400 yds S of Pedro Hill Rd | 2A | 2A | 120 | 170 | c | c | 290 | 310 | c | c | 180 | 230 | c | c | 180 | 230 | c | c | 110 | 160 | c | c | 300 | 320 | c | c |
| 208 | Salmon Falls Rd | 200 yds S of Rattlesnake Bar Rd | 2A | 2A | 30 | 50 | c | c | 210 | 190 | c | c | 100 | 100 | c | c | 100 | 100 | c | c | 30 | 40 | c | c | 210 | 200 | c | c |
| 209 | Sand Ridge Rd | 300 ftE of SR 49 | 2A | 2 A | 50 | 50 | C | C | 130 | 120 | c | C | 90 | 90 | C | C | 90 | 90 | c | C | 50 | 50 | C | C | 140 | 130 | C | C |
| 210 | Serrano Pkwy | 300 ft W of Bass Lake Rd | 4AD | 4AD | 370 | 380 | C | c | 870 | 760 | c | c | 410 | 470 | C | C | 410 | 480 | c | C | 400 | 430 | c | c | 580 | 690 | C | c |
| 211 | Shingle Springs Dr | 0.20 mi S of U.S. Highway 50 | 2A | 2A | 420 | 400 | C | C | 650 | 780 | C | C | 560 | 570 | C | C | 560 | 570 | C | C | 400 | 390 | C | C | 670 | 760 | C | C |
| 212 | Sly Park Rd | 0.35 mi E of Mt Aukum Rd | 2A | 2A | 240 | 290 | C | C | 310 | 360 | C | C | 280 | 330 | C | C | 280 | 330 | C | C | 240 | 280 | C | C | 310 | 360 | C | C |
| 213 | Sly Park Rd | 1.62 mi W of Mormon Emigrant Tr | W18 | W18 | 150 | 190 | B | B | 190 | 240 | B | B | 170 | 220 | B | B | 170 | 220 | B | B | 150 | 190 | B | B | 200 | 250 | B | B |
| 214 | Sly Park Rd | 0.35 miE of Mormon Emigrant Tr | 2A | 2A | 260 | 330 | C | C | 350 | 430 | C | C | 320 | 400 | C | C | 320 | 400 | C | C | 250 | 320 | C | C | 380 | 460 | C | C |
| 215 | Sly Park Rd | 100 ftS of Gold Ridge $\operatorname{Tr}$ ( N ) | 2A | 2A | 310 | 310 | C | c | 430 | 450 | C | C | 370 | 380 | C | c | 370 | 380 | c | c | 300 | 310 | C | C | 470 | 480 | C | C |
| 216 | Sly Park Rd | 100 ftS of Pony Express Tr | 2A | 2A | 590 | 710 | C | c | 640 | 770 | C | C | 630 | 750 | C | c | 630 | 750 | C | C | 590 | 710 | C | C | 650 | 770 | C | C |
| 217 | South Shingle Rd | 100 ftS of Sunset Ln | W20 | W20 | 420 | 530 | c | c | 720 | 870 | C | D | 450 | 610 | C | C | 450 | 610 | c | C | 460 | 570 | C | C | 580 | 760 | C | C |
| 218 | SR49 | North of China Hill | 2A | 2A | 480 | 510 | C | c | 590 | 650 | c | C | 540 | 570 | C | C | 540 | 570 | c | c | 450 | 480 | C | C | 580 | 630 | C | C |
| 219 | SR49 | West of Missouri Flat Rd | 2 A | 2 A | 980 | 950 | D | D | 1,240 | 1,280 | D | D | 1,090 | 1,080 | D | D | 1,110 | 1,100 | D | D | 960 | 940 | D | D | 1,160 | 1,150 | D | D |
| 220 | SR49 | West of Hastings Creed Rd | 2A | 2A | 260 | 310 | C | c | 410 | 500 | C | C | 360 | 440 | C | C | 360 | 430 | C | C | 250 | 290 | C | C | 410 | 510 | C | C |
| 221 | SR49 | At the Placer County Line | 2A | 2A | 640 | 750 | c | c | 810 | 940 | c | D | 750 | 870 | C | D | 750 | 870 | c | D | 620 | 730 | c | C | 820 | 950 | C | D |
| 222 | SR 193 | West of American River Road | 2A | 2A | 470 | 580 | c | C | 590 | 710 | c | c | 540 | 650 | C | C | 540 | 650 | c | C | 460 | 560 | C | c | 600 | 710 | C | C |
| 223 | SR 193 | North of SR 49 in Placerville | 2A | 2A | 180 | 190 | c | c | 210 | 230 | c | C | 200 | 210 | C | C | 200 | 210 | c | C | 170 | 180 | c | C | 210 | 230 | C | C |
| 224 | Union Mine Rd | 200 yds S of SR 49 | 2A | 2A | 290 | 140 | C | C | 300 | 160 | c | C | 290 | 150 | C | c | 290 | 150 | c | c | 280 | 140 | C | C | 300 | 160 | C | c |
| 225 | Wentworth Springs Rd | 0.7 miE of Main St | 2A | 2A | 170 | 220 | C | C | 190 | 250 | C | C | 180 | 240 | C | C | 180 | 240 | C | C | 160 | 210 | C | C | 200 | 260 | C | C |
| 226 | White Rock Rd | At County Line | 2A | 4AD | 530 | 1,070 | C | D | 1,060 | 1,910 | D | F | 660 | 1,330 | C | C | 660 | 1,280 | C | C | 900 | 1,810 | D | F | 1,020 | 1,740 | C | C |
| 227 | White Rock Rd | 100 ft W of Latrobe Rd | 4AD | 4AD | 710 | 1,150 | C | C | 1,340 | 2,220 | C | D | 740 | 1,330 | C | C | 740 | 1,270 | C | C | 1,180 | 2,070 | C | D | 1,050 | 1,650 | C | C |

## D.8.2 References Cited

California Department of Transportation. 1992. Travel Forecasting Guidelines.
——. 2000. State Route 49 Transportation Concept Report. September. District 3. Available: <http:// www.dot.ca.gov/ dist3/ departments/ planning/ tcr/ tcr49.pdf>. Accessed: February 6, 2014.
——. 2014. Transportation Concept Report and Corridor System Management Plan United States Highway 50. June. District 3.

California Transportation Commission. 2010.2010 California Regional Transportation Plan Guidelines.

Federal Highway Administration. 1990. Calibration and Adjustment of System Planning Models.
Kimley-Horn and Associates. 2014. Draft Transportation and Traffic Analysis for the El Dorado County Targeted General Plan Amendments/Zoning Ordinance Update Draft Program Environmental Impact Report. February. Prepared for County of El Dorado.

Sacramento Area Council of Governments. 2012. Metropolitan Transportation Plan/Sustainable Communities Strategy (MTP/SCS) 2035. Available: http:// www.sacog.org/ 2035/mtpscs/ . Accessed: January 31, 2014.

Transportation Research Board. 2010. Highway Capacity Manual.


[^0]:    ${ }^{1}$ More detailed information regarding development of the model, technical memorandum's prepared during the development process are located on the El Dorado County website at: http:/ / www.edcgov.us/ Government/ Planning/ Travel_Demand_Model.aspx?terms=travel\%20demand\%20model

